12 research outputs found

    Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes

    Get PDF
    Analysis of phytoplankton data from about 1,500 lakes in 20 European countries has revealed that two-thirds of the species that dominate lakes during the summer are dominant right across Europe. Using Canonical Correspondence Analyses, we have examined how both habitat conditions within lakes and environmental factors over broad geographical scales explained the distribution of the 151 most common summer dominant species. The distributions of these species were best explained by water colour and latitude, although alkalinity and total phosphorus also appeared to be important explanatory factors. Contrary to our original hypothesis, summer water temperatures had a negligible impact on the distribution of dominants, although, due to the restricted summer season we examined, only a limited temperature gradient was present in the dataset. Cryptophytes occurred more frequently among dominants in Northern Europe whereas cyanobacteria and dinophytes dominated more in Central and Southern Europe. Our analyses suggest that besides nutrient concentrations, other water chemistry variables, such as alkalinity and the content of humic substances, have at least as important a role in determining the distribution of the dominant phytoplankton species in European lakes

    Variability and Host Density Independence in Inductions-based Estimates of Environmental Lysogeny

    Get PDF
    Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen–lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or consistent evidence of either positive or negative host density dependence to the lytic–lysogenic switch. Other metrics are therefore needed to understand the drivers of the lytic–lysogenic decision in viral communities and to test models of the host density-dependent viral lytic–lysogenic switch

    The EAES Clinical Practice Guidelines on Laparoscopic Resection of Colonic Cancer (2004)

    No full text
    corecore