13 research outputs found

    Failure surface development due to shallow gas : a case study from the Hikurangi Margin, New Zealand

    Get PDF
    The characteristic morphology of spreading, in the form of a recurring and parallel pattern of ridges and troughs, has been observed in numerous submarine landslides around the world. Limit equilibrium modelling of slope failure processes in the Storegga Slide had indicated that an increase in pore pressure is likely an important cause of spreading. In this study we explore the hypothesis that pore pressure generation in sub-seafloor sediments by shallow gas can promote the development of a weak layer above which submarine spreading can occur. We do this by analysing multibeam echosounder, sub-bottom and 2D multichannel seismic data acquired offshore the east coast of the North Island, New Zealand.peer-reviewe

    Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity

    Get PDF
    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides- Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23â—¦ . They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed morphometric analysis of these volcanoes has been conducted: they are up to about 115-160 m high and 500-1500 m wide. Most of them show very strongly inclined flanks with 30â—¦ of average slope. The SCV2 and SCV3 form the Graham Bank, 3.5X2.8 km wide, elongated in the NW-SE direction. At the top of SCV2 focused seepage plumes were observed in the entire water column, through the CHIRP data, where we calculated that they release, a volume of about 10950 m3 and 43960 m3of gases, respectively. In this work, we present the first results of a data collection that have got as main result the identification and mapping of the fluid escape structures revealing the relationship between the active tectonic with migration of fluids, to be used to assess the Submarine Geo-Hazard in the Sicily Channel. We identified two fluid escape fields whose genesis and evolution appear linked to the neotectonic and volcanic activities respectively, that represent the main controlling factors for the migration of fluid; considering the good correlation between pockmarks and the main identified fault systems. In conclusion, our results suggest that the degassing of fluids in this region is rooted at depth, and is mainly aligned with the NW-SE dip/strike slip fault systems, repeatedly reactivated, and linked to the volcanic activity.peer-reviewe

    Use of GPR and standard geophysical methods to explore the subsurface : example from the Maltese Archipelago

    Get PDF
    The aim of this work is to illustrate the results of Ground Penetrating Radar (GPR) and passive seismic measurements in selected sites in Malta. The data were gathered during a Short-Term Scientific Mission (STSM) performed under the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." The purpose of the measures has been twofold, namely to test the performances of an innovative GPR system [1], recently upgraded, and to perform GPR and passive seismic analyses in several sites of interest in Malta, in order to get an insight about their geological conditions as well as about the internal status of some historical monuments. The exploited GPR system was a prototypal stepped-frequency reconfigurable GPR, implemented by IBAM-CNR together with the University of Florence and the IDS Corporation within the research project AITECH (www.aitechnet.com/ibam.html). This system contains three equivalent couples of antennas with the same gap, achieved from two series of switches along the arms. The on and off state of the switches make equivalently longer or shorter the antennas, so to achieve efficient transmission on three bands that cover the comprehensive frequency range from 50 MHz to 1 GHz. Passive seismic techniques where used in order to gather useful data to be compared and integrated with those obtained with the GPR. Ambient noise was recorded using a three-component seismometer. Data were gathered at the following sites a) on a cliff area close to the Golden Bay tower; b) Madliena tower; c) Laferla Cross; d) santa Maria Church. We were able to locate and determine fractures on the cliff area as well as to locate graves and buried structures at the investigated sites.peer-reviewe

    4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework

    No full text
    During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse movement due to lateral sediment flux in the central part of the earthflow

    Tectonic activity and the evolution of submarine canyons : the Cook Strait Canyon system, New Zealand

    Get PDF
    Submarine canyons are Earth’s most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology.peer-reviewe

    Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity

    Get PDF
    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides- Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed morphometric analysis of these volcanoes has been conducted: they are up to about 115-160 m high and 500-1500 m wide. Most of them show very strongly inclined flanks with 30 of average slope. The SCV2 and SCV3 form the Graham Bank, 3.5X2.8 km wide, elongated in the NW-SE direction. At the top of SCV2 focused seepage plumes were observed in the entire water column, through the CHIRP data, where we calculated that they release, a volume of about 10950 m3 and 43960 m3of gases, respectively. In this work, we present the first results of a data collection that have got as main result the identification and mapping of the fluid escape structures revealing the relationship between the active tectonic with migration of fluids, to be used to assess the Submarine Geo-Hazard in the Sicily Channel. We identified two fluid escape fields whose genesis and evolution appear linked to the neotectonic and volcanic activities respectively, that represent the main controlling factors for the migration of fluid; considering the good correlation between pockmarks and the main identified fault systems. In conclusion, our results suggest that the degassing of fluids in this region is rooted at depth, and is mainly aligned with the NW-SE dip/strike slip fault systems, repeatedly reactivated, and linked to the volcanic activity. View publicatio

    The 2014 High Record of Antarctic Sea Ice Extent

    Get PDF
    The record maximum of Antarctic sea ice resulted chiefly from anomalous winds that transported cold air masses away from the Antarctic continent, enhancing thermodynamic sea ice production far offshore

    Colonisation of freshly deposited volcanic tephra by soil fungi

    No full text
    In active volcanic regions, soils are repeatedly exposed to eruption products, notably tephra emissions. Deposition of volcanic tephra on soil may modify water and gas exchanges between the soil surface and the atmosphere. Through chemical weathering, the silicate glass and mineral components of freshly deposited tephra act as a source of bioavailable potassium and phosphorus. In addition, opportunist fungi may be able to enhance access to these elements via physical and biochemical processes. Altogether, tephra deposition has the potential to affect biological activity and hence, nutrient cycling in the buried soil. Here we present the preliminary results of an ongoing investigation aimed at shedding light on the interaction of soil fungi with freshly deposited tephra. The study site (elevation - 1755 m a.s.l.) is a coniferous forest on the northeastern slope of Etna volcano, Sicily, which received about 20 cm of tephra in November 2013. Soil and tephra samples were collected in September 2014 and October 2015. A variety of biological, chemical and mineralogical analyses were carried out to determine fungal biomass, fungi species and tephra weathering stage. Colonisation of the fresh tephra by fungi is evidenced by the high fungal biomass measured in this material. DNA analyses further indicate that these fungi originate from the soil beneath the tephra layer. While chemical weathering of the tephra material has started, there is no clear indication that fungi colonisation is enhancing this process. We will continue to monitor fungi-tephra interaction on Etna during the next few years
    corecore