3,148 research outputs found

    Lattice vs. continuum theory of the periodic Heisenberg chain

    Full text link
    We consider the detailed structure of low energy excitations in the periodic spin-1/2 XXZ Heisenberg chain. By performing a perturbative calculation of the non-linear corrections to the Gaussian model, we determine the exact coefficients of asymptotic expansions in inverse powers of the system length N for a large number of low-lying excited energy levels. This allows us to calculate eigenenergies of the lattice model up to order order N^-4, without having to solve the Bethe Ansatz equations. At the same time, it is possible to express the exact eigenstates of the lattice model in terms of bosonic modes.Comment: 17 pages, 8 Figures. The latest version can be found at http://www.physik.uni-kl.de/eggert/papers/index.htm

    Wigner crystal vs. Friedel oscillations in the 1D Hubbard model

    Full text link
    We analyze the fermion density of the one-dimensional Hubbard model using bosonization and numerical DMRG calculations. For finite systems we find a relatively sharp crossover even for moderate short range interactions into a region with 4kF4k_F density waves as a function of density. The results show that the unstable fixed point of a spin-incoherent state can dominate the physical behavior in a large region of parameter space in finite systems. The crossover may be observable in ultra cold fermionic gases in optical lattices and in finite quantum wires.Comment: 6 pages, 6 figures. Published version. The most recent file can be found at http://www.physik.uni-kl.de/eggert/papers/index.htm

    Universal cross-over behavior of a magnetic impurity and consequences for doping in spin-1/2 chains

    Full text link
    We consider a magnetic impurity in the antiferromagnetic spin-1/2 chain which is equivalent to the two-channel Kondo problem in terms of the field theoretical description. Using a modification of the transfer-matrix density matrix renormalization group (DMRG) we are able to determine local and global properties in the thermodynamic limit. The cross-over function for the impurity susceptibility is calculated over a large temperature range, which exhibits universal data-collapse. We are also able to determine the local susceptibilities near the impurity, which show an interesting competition of boundary effects. This results in quantitative predictions for experiments on doped spin-1/2 chains, which could observe two-channel Kondo physics directly.Comment: 5 pages in revtex format including 3 embedded figures (using epsf). The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/crossover.pdf . Accepted by PR

    Improving Small Object Proposals for Company Logo Detection

    Get PDF
    Many modern approaches for object detection are two-staged pipelines. The first stage identifies regions of interest which are then classified in the second stage. Faster R-CNN is such an approach for object detection which combines both stages into a single pipeline. In this paper we apply Faster R-CNN to the task of company logo detection. Motivated by its weak performance on small object instances, we examine in detail both the proposal and the classification stage with respect to a wide range of object sizes. We investigate the influence of feature map resolution on the performance of those stages. Based on theoretical considerations, we introduce an improved scheme for generating anchor proposals and propose a modification to Faster R-CNN which leverages higher-resolution feature maps for small objects. We evaluate our approach on the FlickrLogos dataset improving the RPN performance from 0.52 to 0.71 (MABO) and the detection performance from 0.52 to 0.67 (mAP).Comment: 8 Pages, ICMR 201

    Neel order in doped quasi one-dimensional antiferromagnets

    Full text link
    We study the Neel temperature of quasi one-dimensional S=1/2 antiferromagnets containing non-magnetic impurities. We first consider the temperature dependence of the staggered susceptibility of finite chains with open boundary conditions, which shows an interesting difference for even and odd length chains. We then use a mean field theory treatment to incorporate the three dimensional inter-chain couplings. The resulting Neel temperature shows a pronounced drop as a function of doping by up to a factor of 5.Comment: 4 pages in revtex4 format including 2 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/staggered.pd

    Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

    Full text link
    We use the density matrix renormalization group (DMRG) for transfer matrices to numerically calculate impurity corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain, namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory calculations and gives new results for the crossover behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf). To appear in PRB. The latest version in PDF format can be found at http://fy.chalmers.se/~eggert/papers/DMRGimp.pd

    Phase diagram of an impurity in the spin-1/2 chain: two channel Kondo effect versus Curie law

    Full text link
    We consider a magnetic s=1/2 impurity in the antiferromagnetic spin chain as a function of two coupling parameters: the symmetric coupling of the impurity to two sites in the chain J1J_1 and the coupling between the two sites J2J_2. By using field theory arguments and numerical calculations we can identify all possible fixed points and classify the renormalization flow between them, which leads to a non-trivial phase diagram. Depending on the detailed choice of the two (frustrating) coupling strengths, the stable phases correspond either to a decoupled spin with Curie law behavior or to a non-Fermi liquid fixed point with a logarithmically diverging impurity susceptibility as in the two channel Kondo effect. Our results resolve a controversy about the renormalization flow.Comment: 5 pages in revtex format including 4 embedded figures (using epsf). The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/phase-diagram.pd

    Integrable versus Non-Integrable Spin Chain Impurity Models

    Full text link
    Recent renormalization group studies of impurities in spin-1/2 chains appear to be inconsistent with Bethe ansatz results for a special integrable model. We study this system in more detail around the integrable point in parameter space and argue that this integrable impurity model corresponds to a non-generic multi-critical point. Using previous results on impurities in half-integer spin chains, a consistent renormalization group flow and phase diagram is proposed.Comment: 20 pages 11 figures obtainable from authors, REVTEX 3.

    The Hidden Role of Non-Canonical Amyloid beta Isoforms in Alzheimer's Disease

    Get PDF
    Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer’s Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine

    Doped coupled frustrated spin-1/2 chains with four-spin exchange

    Full text link
    The role of various magnetic inter-chain couplings is investigated by numerical methods in doped frustrated quantum spin chains. A non-magnetic dopant introduced in a gapped spin chain releases a free spin-1/2 soliton. The formation of a local magnetic moment is analyzed in term of soliton confinement. A four-spin coupling which might originate from cyclic exchange is shown to produce such a confinement in contrast to transverse magnetic exchange. Dopants on different chains experience an effective space-extended non-frustrating pairwise spin interaction.Comment: Few modifications and references added. Submitted to PR
    • …
    corecore