4 research outputs found

    Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity

    Get PDF
    Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania. First, removal of the Leishmania infantum mitochondrial TXN (LiTXN2) by gene-targeting, had no significant effect on parasite survival, even in the context of an animal infection. Second, evidence is presented that no other TXN is capable of replacing LiTXN2. In fact, although a candidate substitute for LiTXN2 (LiTXN3) was found in the genome of L. infantum, this was shown in biochemical assays to be poorly reduced by trypanothione and to be unable to reduce sulfur-containing peroxidases. Definitive conclusion that LiTXN3 cannot directly reduce proteins located within inner mitochondrial compartments was provided by analysis of its subcellular localization and membrane topology, which revealed that LiTXN3 is a tail-anchored (TA) mitochondrial outer membrane protein presenting, as characteristic of TA proteins, its N-terminal end (containing the redox-active domain) exposed to the cytosol. This manuscript further proposes the separation of trypanosomatid TXN sequences into two classes and this is supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs. Trypanosoma possess only two TXNs, one belonging to class I (which is cytosolic) and the other to class II. Thus, as demonstrated for Leishmania, the mitochondrial redox metabolism in Trypanosoma may also be independent of TXN activity. The major implication of these findings is that mitochondrial functions previously thought to depend on the provision of electrons by a TXN enzyme must proceed differently

    The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide

    No full text
    Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide

    Redox Homeostasis

    No full text
    International audienc
    corecore