5 research outputs found

    Relative Effectiveness of Mating Success and Sperm Competition at Eliminating Deleterious Mutations in Drosophila melanogaster

    Get PDF
    Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve

    Sperm competition affects sex allocation but not sperm morphology in a flatworm

    Get PDF
    Sperm competition has been shown to be an important evolutionary agent affecting the behaviour, physiology, and morphology of both males and females. One morphological trait that is particularly likely to be affected by sperm competition is sperm size because it is thought to influence the competitiveness of sperm by determining sperm longevity, motility, and/or their ability to displace competing sperm. Most comparative studies across taxa have found a positive relationship between the level of sperm competition and sperm length, but very few studies have tested for a phenotypically plastic adjustment of sperm morphology in response to sperm competition. In this study, we experimentally tested for an effect of sperm competition on phenotypic plasticity in sperm morphology in an obligately outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano, by either raising worms in monogamous pairs (no sperm competition) or in promiscuous groups (intense sperm competition). Worms in groups produced larger testes and smaller ovaries as predicted by sex allocation theory and as previously documented in this species. However, we found no evidence for an effect of group size on sperm morphology, measured as total sperm length, sperm body length, and the length of two different sperm appendages. We conclude that M. lignano may either be incapable of adjusting the sperm morphology in a phenotypically plastic way and/or that there might be no benefit of phenotypic plasticity in sperm traits in this species
    corecore