19 research outputs found

    Keystone symposium: The role of microenvironment in tumor induction and progression, Banff, Canada, 5–10 February 2005

    Get PDF
    The first Keystone symposium on the role of microenvironment in tumor induction and progression attracted 274 delegates from 13 countries to Banff in the heart of the Canadian Rockies. The meeting was organized by Mina Bissell, Ronald DePinho and Luis Parada, and was held concurrently with the Keystone symposium on cancer and development, chaired by Matthew Scott and Roeland Nusse. The 30 oral presentations and over 130 posters provided an excellent forum for discussing emerging data in this rapidly advancing field

    PPARα Deficiency in Inflammatory Cells Suppresses Tumor Growth

    Get PDF
    Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)α is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARα deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPARα expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPARα-deficient mice. These findings suggest that the absence of PPARα activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis

    Primäre Sarkome der Leber

    No full text

    Consecutive successful ALPPS in 2 years without reoperation and mortality

    No full text

    Post-hepatectomy ascites: application of proposed definition and severity grading in 222 patients

    No full text

    Tumor-initiating activity and tumor morphology of HNSCC is modulated by interactions between clonal variants within the tumor

    No full text
    Tumor initiation (TI) in xenotransplantation models of head and neck squamous cell carcinoma (HNSCC) is an inefficient process. Poor TI could be due to (1) posttransplant cell loss, (2) a rare sub-population of cancer stem cells or (3) a requirement for specific cellular interactions, which rely on cell number. By tracking GFP-expressing HNSCC cells, we conclude that the posttransplant loss of cancer cells is minimal in the xenotransplant model. Furthermore, an examination of putative cancer stem cell markers (such as CD133, CD44, SP and label retention) in HNSCC cell lines revealed no correlation between marker expression and tumorigenicity. In addition, single-cell clones randomly isolated from HNSCC cell lines and then transplanted into mice were all capable of initiating tumors with efficiencies varying almost 34-fold. As the observed variation in the clones was both more and less tumorigenic than the parental cells, a combination of two clones, at suboptimal cell numbers for TI, was implanted into mice and was found to modulate the tumor-initiating activity, thus indicating that TI is dependent on a critical number of cells and, for the first time, that interactions between clonal variants within tumors can modulate the overall tumor-initiating activity. Put in context with previous literature on tumorigenic activity, we believe that interactions between clonal variants within a tumor as well as (1) stromal interactions, (2) angiogenic activity, (3) immunocompetence and (4) cancer stem cells may all contribute to tumorigenic potential and the propensity for tumor growth and recurrence
    corecore