16 research outputs found

    Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana

    Get PDF
    Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >∼0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments

    A multiplex SNP assay for the dissection of human Y-chromosome haplogroup O representing the major paternal lineage in East and Southeast Asia

    No full text
    The majority of human Y chromosomes in men from East and Southeast Asia, and a considerable proportion of Oceanian men, especially those from Remote Oceania, belong to haplogroup O, characterized by a 5-bp deletion known as M175 (rs2032678). Recent advances in Y-SNP (single-nucleotide polymorphism) discovery have substantially improved the phylogenetic resolution of haplogroup O sublineages. By taking advantage of this recent knowledge, we hereby introduce a sensitive Y-SNP multiplex genotyping assay for the dissection of haplogroup O into its most significant sublineages. The multiplex assay thus provides an efficient way to infer patrilineal biogeographic ancestry in males of Asian/Oceanian patrilineal descent, and is suitable for applications in human population genetics, anthropological, genealogical, as well as forensic studies. Journal of Human Genetics (2012) 57, 65-69; doi: 10.1038/jhg.2011.120; published online 3 November 201

    A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data.

    No full text
    High-throughput sequencing of related individuals has become an important tool for studying human disease. However, owing to technical complexity and lack of available tools, most pedigree-based sequencing studies rely on an ad hoc combination of suboptimal analyses. Here we present pedigree-VAAST (pVAAST), a disease-gene identification tool designed for high-throughput sequence data in pedigrees. pVAAST uses a sequence-based model to perform variant and gene-based linkage analysis. Linkage information is then combined with functional prediction and rare variant case-control association information in a unified statistical framework. pVAAST outperformed linkage and rare-variant association tests in simulations and identified disease-causing genes from whole-genome sequence data in three human pedigrees with dominant, recessive and de novo inheritance patterns. The approach is robust to incomplete penetrance and locus heterogeneity and is applicable to a wide variety of genetic traits. pVAAST maintains high power across studies of monogenic, high-penetrance phenotypes in a single pedigree to highly polygenic, common phenotypes involving hundreds of pedigrees

    The genetic landscape of Alzheimer disease : clinical implications and perspectives

    No full text
    The search for the genetic factors contributing to Alzheimer disease (AD) has evolved tremendously throughout the years. It started from the discovery of fully penetrant mutations in Amyloid precursor protein, Presenilin 1, and Presenilin 2 as a cause of autosomal dominant AD, the identification of the ɛ4 allele of Apolipoprotein E as a strong genetic risk factor for both early-onset and late-onset AD, and evolved to the more recent detection of at least 21 additional genetic risk loci for the genetically complex form of AD emerging from genome-wide association studies and massive parallel resequencing efforts. These advances in AD genetics are positioned in light of the current endeavor directing toward translational research and personalized treatment of AD. We discuss the current state of the art of AD genetics and address the implications and relevance of AD genetics in clinical diagnosis and risk prediction, distinguishing between monogenic and multifactorial AD. Furthermore, the potential and current limitations of molecular reclassification of AD to streamline clinical trials in drug development and biomarker studies are addressed. Genet Med 18 5, 421–430
    corecore