4 research outputs found

    Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)pH value and the concentration of dissolved oxygen (DO) are key parameters to monitor and control cell growth in cultivation studies. Reliable, robust and accurate methods to measure these parameters in cultivation systems in real time guarantee high product yield and quality. This mini-review summarises the current state of the art of pH and DO sensors that are applied to bioprocesses from millilitre to benchtop scale by means of a short introduction on measuring principles and selected applications. Special emphasis is placed on single-use bioreactors, which have been increasingly employed in bioprocess development and production in recent years. Working principles, applications and the particular requirements of sensors in these cultivation systems are given. In such processes, optical sensors for pH and DO are often preferred to electrochemical probes, as they allow semi-invasive measurements and can be miniaturised to micrometre scale or lower. In addition, selected measuring principles of novel sensing technologies for pH and DO are discussed. These include solid-state sensors and miniaturised devices that are not yet commercially available, but show promising characteristics for possible use in bioprocesses in the near future

    Towards ultra-low power bio-inspired processing

    No full text
    The natural world is analogue and yet the modern microelectronic world with which we interact represents real world data using discrete quantities manipulated by logic. In the human space, we are entering a new wave of body-worn biosensor technology for medical diagnostics and therapy. This new trend is beginning to see the processing interface move back to using continuous quantities, which are more or less in line with the biological processes. We label this computational paradigm “bio-inspired” because of the ability of silicon chip technology which enables the use of inherent device physics, allowing us to approach the computational efficiencies of biology. From a conceptual viewpoint, this has led to a number of more specific morphologies including neuromorphic and retinomorphic processing. These have led scientists to model biological systems such as the cochlea and retina and gain not only superior computational resource efficiency (to conventional hearing aid or camera technology), but also an increased understanding of biological and neurological processes
    corecore