44,002 research outputs found
Filtering device
An electrical filter for removing noise from a voice communications signal is reported; seven sample values of the signal are obtained continuously, updated and subjected to filtering. Filtering is accomplished by adding balanced, with respect to a mid-point sample, spaced pairs of the sampled values, and then multiplying each pair by a selected filter constant. The signal products thus obtained are summed to provide a filtered version of the original signal
Theoretical and experimental investigations of upper atmosphere dynamics
A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included
Statistical Mechanics of Vibration-Induced Compaction of Powders
We propose a theory which describes the density relaxation of loosely packed,
cohesionless granular material under mechanical tapping. Using the compactivity
concept we develope a formalism of statistical mechanics which allows us to
calculate the density of a powder as a function of time and compactivity. A
simple fluctuation-dissipation relation which relates compactivity to the
amplitude and frequency of a tapping is proposed. Experimental data of
E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of
initially deposited in a fluffy state powder evolves under carefully controlled
tapping towards a random close packing (RCP) density. Ramping the vibration
amplitude repeatedly up and back down again reveals the existence of reversible
and irreversible branches in the response. In the framework of our approach the
reversible branch (along which the RCP density is obtained) corresponds to the
steady state solution of the Fokker-Planck equation whereas the irreversible
one is represented by a superposition of "excited states" eigenfunctions. These
two regimes of response are analyzed theoretically and a qualitative
explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex
Domain Wall Fermions with Exact Chiral Symmetry
We show how the standard domain wall action can be simply modified to allow
arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note
that the method can be used for both quenched and dynamical calculations. We
test the method using smooth and thermalized gauge field configurations. We
also make comparisons of the performance (cost) of the domain wall operator for
spectroscopy compared to other methods such as the overlap-Dirac operator and
find both methods are comparable in cost.Comment: revtex, 37 pages, 11 color postscript figure
Parallel density matrix propagation in spin dynamics simulations
Several methods for density matrix propagation in distributed computing
environments, such as clusters and graphics processing units, are proposed and
evaluated. It is demonstrated that the large communication overhead associated
with each propagation step (two-sided multiplication of the density matrix by
an exponential propagator and its conjugate) may be avoided and the simulation
recast in a form that requires virtually no inter-thread communication. Good
scaling is demonstrated on a 128-core (16 nodes, 8 cores each) cluster.Comment: Submitted for publicatio
Topological Phases in Neuberger-Dirac operator
The response of the Neuberger-Dirac fermion operator D=\Id + V in the
topologically nontrivial background gauge field depends on the negative mass
parameter in the Wilson-Dirac fermion operator which enters
through the unitary operator . We classify
the topological phases of by comparing its index to the topological charge
of the smooth background gauge field. An exact discrete symmetry in the
topological phase diagram is proved for any gauge configurations. A formula for
the index of D in each topological phase is derived by obtaining the total
chiral charge of the zero modes in the exact solution of the free fermion
propagator.Comment: 27 pages, Latex, 3 figures, appendix A has been revise
An alternative to domain wall fermions
We define a sparse hermitian lattice Dirac matrix, , coupling Dirac
fermions. When fermions are integrated out the induced action for the last
fermion is a rational approximation to the hermitian overlap Dirac operator. We
provide rigorous bounds on the condition number of and compare them to
bounds for the higher dimensional Dirac operator of domain wall fermions. Our
main conclusion is that overlap fermions should be taken seriously as a
practical alternative to domain wall fermions in the context of numerical QCD.Comment: Revtex Latex, 26 pages, 1 figure, a few minor change
DNA methylation and DNA methyltransferases
The prevailing views as to the form, function, and regulation of genomic methylation patterns have their origin many years in the past, at a time when the structure of the mammalian genome was only dimly perceived, when the number of protein-encoding mammalian genes was believed to be at least five times greater than the actual number, and when it was not understood that only ~10% of the genome is under selective pressure and likely to have biological function. We use more recent findings from genome biology and whole-genome methylation profiling to provide a reappraisal of the shape of genomic methylation patterns and the nature of the changes that they undergo during gametogenesis and early development. We observe that the sequences that undergo deep changes in methylation status during early development are largely sequences without regulatory function. We also discuss recent findings that begin to explain the remarkable fidelity of maintenance methylation. Rather than a general overview of DNA methylation in mammals (which has been the subject of many reviews), we present a new analysis of the distribution of methylated CpG dinucleotides across the multiple sequence compartments that make up the mammalian genome, and we offer an updated interpretation of the nature of the changes in methylation patterns that occur in germ cells and early embryos. We discuss the cues that might designate specific sequences for demethylation or de novo methylation during development, and we summarize recent findings on mechanisms that maintain methylation patterns in mammalian genomes. We also describe the several human disorders, each very different from the other, that are caused by mutations in DNA methyltransferase genes
Nonclassical shallow water flows
This paper deals with violent discontinuities in shallow water flows with large Froude number .
On a horizontal base, the paradigm problem is that of the impact of two fluid layers in situations where the flow can be modelled as two smooth regions joined by a singularity in the flow field. Within the framework of shallow water theory we show that, over a certain timescale, this discontinuity may be described by a delta-shock, which is a weak solution of the underlying conservation laws in which the depth and mass and momentum fluxes have both delta function and step functioncomponents. We also make some conjectures about how this model evolves from the traditional model for jet impacts in which a spout is emitted.
For flows on a sloping base, we show that for flow with an aspect ratio of \emph{O}() on a base with an \emph{O(1)} or larger slope, the governing equations admit a new type of discontinuous solution that is also modelled as a delta-shock. The physical manifestation of this discontinuity is a small `tube' of fluid bounding the flow. The delta-shock conditions for this flow are derived and solved for a point source on an inclined plane. This latter delta-shock framework also sheds light on the evolution of the layer impact on a horizontal base
Scanning laser source and scanning laser detection techniques for different surface crack geometries
Standard test samples typically contain simulated defects such as slots machined normal to the surface. However, real defects will not always propagate in this manner; for example, rolling contact fatigue on rails propagates at around 25º to the surface, and corrosion cracking can grow in a branched manner. Therefore, there is a need to understand how ultrasonic surface waves interact with different crack geometries. We present measurements of machined slots inclined at an angle to the surface normal, or with simple branched geometries, using laser ultrasound. Recently, Rayleigh wave enhancements observed when using the scanning laser source technique, where a generation laser is scanned along a sample, have been highlighted for their potential in detecting surface cracks. We show that the enhancement measured with laser detector scanning can give a more significant enhancement when different crack geometries are considered. We discuss the behaviour of an incident Rayleigh wave in the region of an angled defect, and consider mode-conversions which lead to a very large enhancement when the detector is close to the opening of a shallow defect. This process could be used in characterising defects, as well as being an excellent fingerprint of their presence
- …