44 research outputs found

    A phase 2, double-blind, multicenter, randomized, placebo-controlled, dose‑ranging study of the efficacy and safety of Astodrimer Gel for the treatment of bacterial vaginosis

    Get PDF
    Background Astodrimer Gel contains a novel dendrimer intended to treat and prevent bacterial vaginosis. We assessed the efficacy and safety of Astodrimer Gel for treatment of bacterial vaginosis. Methods 132 women with bacterial vaginosis were randomized 1:1:1:1 to Astodrimer 0.5% (N = 34), 1% (N = 33), or 3% (N = 32) Gel or hydroxyethyl cellulose placebo gel (N = 33) at a dose of 5 g vaginally once daily for 7 days at 6 centers in the United States. The primary endpoint was clinical cure (no bacterial vaginosis vaginal discharge and no more than one of 1) vaginal pH ≥4.5; 2) ≥20% clue cells; or 3) positive whiff test) at study days 21–30. Secondary analyses included clinical cure at study days 9–12, patient-reported symptoms, acceptability and adverse events. Results The Astodrimer 1% Gel dose was superior to placebo for the primary and selected secondary efficacy measures in the modified intent-to-treat population. Clinical cure rates at day 9–12 were superior to placebo for the Astodrimer 3%, 1% and 0.5% Gel groups (62.5% [15/24; P = .002], 74.1% [20/27; P < .001], and 55.2% [16/29; P = .001], respectively, vs. 22.2% [6/27]). At day 21–30, clinical cure rates were 46.2% (12/26) for the 1% dose vs. 11.5% for placebo (3/26; P = .006). A greater proportion of patients reported absence of vaginal discharge and vaginal odor at day 9–12 and day 21–30 for Astodrimer Gel groups compared with placebo. Adverse events considered potentially treatment-related occurred in only 25% of Astodrimer Gel-treated patients vs. 22% of placebo patients. Conclusion Astodrimer Gel once daily for 7 days was superior to placebo for treatment of bacterial vaginosis and was well-tolerated. The 1% dose consistently showed the strongest efficacy across endpoints. These results support a role for Astodrimer Gel, 1%, as an effective treatment for bacterial vaginosis

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe
    corecore