14 research outputs found
Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class
The brain keeps its overall dynamics in a corridor of intermediate activity
and it has been a long standing question what possible mechanism could achieve
this task. Mechanisms from the field of statistical physics have long been
suggesting that this homeostasis of brain activity could occur even without a
central regulator, via self-organization on the level of neurons and their
interactions, alone. Such physical mechanisms from the class of self-organized
criticality exhibit characteristic dynamical signatures, similar to seismic
activity related to earthquakes. Measurements of cortex rest activity showed
first signs of dynamical signatures potentially pointing to self-organized
critical dynamics in the brain. Indeed, recent more accurate measurements
allowed for a detailed comparison with scaling theory of non-equilibrium
critical phenomena, proving the existence of criticality in cortex dynamics. We
here compare this new evaluation of cortex activity data to the predictions of
the earliest physics spin model of self-organized critical neural networks. We
find that the model matches with the recent experimental data and its
interpretation in terms of dynamical signatures for criticality in the brain.
The combination of signatures for criticality, power law distributions of
avalanche sizes and durations, as well as a specific scaling relationship
between anomalous exponents, defines a universality class characteristic of the
particular critical phenomenon observed in the neural experiments. The spin
model is a candidate for a minimal model of a self-organized critical adaptive
network for the universality class of neural criticality. As a prototype model,
it provides the background for models that include more biological details, yet
share the same universality class characteristic of the homeostasis of activity
in the brain.Comment: 17 pages, 5 figure
Universal finite-size scaling for percolation theory in high dimensions
We present a unifying, consistent, finite-size-scaling picture for
percolation theory bringing it into the framework of a general,
renormalization-group-based, scaling scheme for systems above their upper
critical dimensions . Behaviour at the critical point is non-universal in
dimensions. Proliferation of the largest clusters, with fractal
dimension , is associated with the breakdown of hyperscaling there when free
boundary conditions are used. But when the boundary conditions are periodic,
the maximal clusters have dimension , and obey random-graph
asymptotics. Universality is instead manifest at the pseudocritical point,
where the failure of hyperscaling in its traditional form is universally
associated with random-graph-type asymptotics for critical cluster sizes,
independent of boundary conditions.Comment: Revised version, 26 pages, no figure
Emergent complex neural dynamics
A large repertoire of spatiotemporal activity patterns in the brain is the
basis for adaptive behaviour. Understanding the mechanism by which the brain's
hundred billion neurons and hundred trillion synapses manage to produce such a
range of cortical configurations in a flexible manner remains a fundamental
problem in neuroscience. One plausible solution is the involvement of universal
mechanisms of emergent complex phenomena evident in dynamical systems poised
near a critical point of a second-order phase transition. We review recent
theoretical and empirical results supporting the notion that the brain is
naturally poised near criticality, as well as its implications for better
understanding of the brain
Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches
Cascading activity is commonly found in complex systems with directed
interactions such as metabolic networks, neuronal networks, or disease spreading
in social networks. Substantial insight into a system's organization
can be obtained by reconstructing the underlying functional network architecture
from the observed activity cascades. Here we focus on Bayesian approaches and
reduce their computational demands by introducing the Iterative Bayesian (IB)
and Posterior Weighted Averaging (PWA) methods. We introduce a special case of
PWA, cast in nonparametric form, which we call the normalized count (NC)
algorithm. NC efficiently reconstructs random and small-world functional network
topologies and architectures from subcritical, critical, and supercritical
cascading dynamics and yields significant improvements over commonly used
correlation methods. With experimental data, NC identified a functional and
structural small-world topology and its corresponding traffic in cortical
networks with neuronal avalanche dynamics