9,349 research outputs found

    Nocturnal Changes in Knee Cartilage Thickness in Young Healthy Adults

    Get PDF
    Magnetic resonance imaging (MRI) allows one to analyze cartilage physiology in vivo. Cartilage deforms during loading, but little is known about its recovery after deformation. Here we study `nocturnal' changes in knee cartilage thickness and whether postexercise deformation differs between morning and evening. Axial magnetic resonance (MR) images were acquired in the right knees of 17 healthy volunteers (age 23.5 +/- 3.0 years) after a normal day, and then after 30 deep knee bends. Coronal images were additionally acquired in 8 of these volunteers after a normal day and then after 2 min of static loading of the leg with 150% body weight. The volunteers then remained unloaded overnight and the same protocol was repeated in the morning. A significant increase (p < 0.01) in cartilage thickness was observed between evening (preexercise) and morning (preexercise): +2.4% in the patella, +8.4% in the medial tibia and +6.2% in the lateral tibia. Deformation in the morning (-6.8/-4.6/-5.1%) was generally greater than that in the evening (-5.4/-3.2/-3.7%), but this difference did not reach statistical significance. No significant difference in the nocturnal thickness increase (or postexercise deformation) was observed between men and women. We conclude that knee cartilage (thickness) recovers overnight by approximately 2-8%, independent of sex. Given the lack of `predeformation' after nocturnal periods of unloading, morning postexercise deformation of the cartilage may have a greater magnitude than evening postexercise deformation. Copyright (C) 2012 S. Karger AG, Base

    Präzision MRT-basierter Gelenkflächen- und Knorpeldickenanalysen im Kniegelenk bei Verwendung einer schnellen Wasseranregungs-Sequenz und eines semiautomatischen Segmentierungs-Algorithmus

    Get PDF
    The aim of this study was to analyse the precision of three-dimensional joint surface and cartilage thickness measurements in the knee, using a fast, high-resolution water-excitation sequence and a semiautomated segmentation algorithm. The knee joint of 8 healthy volunteers, aged 22 to 29 years, were examined at a resolution of 1.5 mm x 0.31 mm x 0.31 mm, with four sagittal data sets being acquired after repositioning the joint. After semiautomated segmentation with a B-spline Snake algorithm and 3D reconstruction of the patellar, femoral and tibial cartilages, the joint surface areas (triangulation), cartilage volume, and mean and maximum thickness (Euclidean distance transformation) were analysed, independently of the orientation of the sections. The precision (CV%) for the surface areas was 2.1 to 6.6%. The mean cartilage thickness and cartilage volume showed coefficients of 1.9 to 3.5% (except for the femoral condyles), the value for the medial femoral condyle being 9.1%, and for the lateral condyle 6.5%. For maximum thickness, coefficients of between 2.6 and 5.9% were found. In the present study we investigate for the first time the precision of MRI-based joint surface area measurements in the knee, and of cartilage thickness analyses in the femur. Using a selective water-excitation sequence, the acquisition time can be reduced by more than 50%. The poorer precision in the femoral condyles can be attributed to partial Volume effects that occur at the edges of the joint surfaces with a sagittal image protocol. Since MRI is non-invasive, it is highly suitable for examination of healthy subjects (generation of individual finite element models, analysis of functional adaptation to mechanical stimulation, measurement of cartilage deformation in vivo) and as a diagnostic tool for follow-up, indication for therapy, and objective evaluation of new therapeutic agents in osteoarthritis

    Stress distribution in the trochlear notch

    Get PDF
    n 16 cadaver humeroulnar joints, the distribution of subchondral mineralisation was assessed by CT osteoabsorptiometry and the position and size of the contact areas by polyether casting under loads of 10 N to 1280 N. Ulnas with separate olecranon and coronoid cartilaginous surfaces showed matching bicentric patterns of mineralisation. Under small loads there were separate contact areas on the olecranon and coronoid surfaces; these areas merged centrally as the load increased. They occupied as little as 9% of the total articular surface at 10 N and up to 73% at 1280 N. Ulnas with continuous cartilaginous surfaces also had density patterns with two maxima but those were less prominent, and in these specimens the separate contact areas merged at lower loads. The findings indicate a physiological incongruity of the articular surfaces which may serve to optimise the distribution of stress

    From joint anatomy to clinical outcomes in osteoarthritis and cartilage repair: summary of the fifth annual osteoarthritis imaging workshop

    Get PDF
    SummaryObjectiveThis white paper constitutes an overview of presentations and discussions from the fifth Annual Workshop on Imaging in Osteoarthritis (OA) held in Salzburg June eighth to eleventh 2011.DesignThis workshop brought together the communities of basic OA researchers, orthopedists and rheumatologists, imaging scientists, instrument manufacturers, and pharmaceutical representatives to focus on three overlapping themes of joint anatomy, cartilage repair and clinical validation of imaging biomarkers.ResultsThe workshop was held on the campus of the Paracelsus Medical University in Salzburg, Austria from June 8–11, 2011; 133 attendees participated, representing 17 countries. The meeting was successful in facilitating discussion, raising awareness and consolidating knowledge about application of imaging in OA research studies and cartilage repair.ConclusionsThe OA research communities need to work alongside the regulatory, pharmaceutical, and MRI industries to support the new ideas and engage in the positive reinforcement of resources to further the new studies. A number of new initiatives were discussed to further break down obstacles to clinical trial utility of imaging biomarkers

    Polyribonucleotides containing a thiophosphate backbone

    Get PDF

    Physiological incongruity of the humero-ulnar joint

    Get PDF
    Investigations into the distribution of subchondral bone density in the human elbow have suggested that the geometry of the trochlear notch deviates from a perfect fit with the trochlea, and that the load is transmitted ventrally and dorsally rather than through the centre of the humero-ulnar joint. We therefore decided to make a quantitative assessment of the degree of incongruity between the two components in 15 human specimens (age distribution 60 to 93 years) with different types of joint surface. Polyether casts of the joint cavity were prepared under loads of 10,40,160 and 640 N. The thickness of the casts was then measured at 50 predetermined points, and an area distribution of the width of the joint space represented in a two-dimensional template of the trochlear notch. The reproducibility of this procedure was tested by image analysis. At a load of 10 N, only a narrow space was present ventrally and dorsally in the joint, but in the depths of the trochlear notch a width of 0.5 to 1 mm was recorded in the centre, and up to 3 mm at its medial and lateral edges. Specimens with continuous articular cartilage showed a lower degree of incongruity than those with a divided articular surface. As the load was increased to 640 N, however, the original incongruity between the articular surfaces disappeared almost completely. The joint surfaces became more congruous, probably because of the viscoelastic properties of the articular cartilage and the subchondral bone, and the contact areas merged in the centre of the joint. It is suggested that this physiological incongruity brings about an optimal distribution of stress over the articular surface during the transmission of the load, and it may lead to better nourishment of the articular cartilage by providing intermittent mechanical stimulation and circulation of the synovial fluid

    The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation

    Get PDF
    Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI). Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course. Study Design: Case series; Level of evidence, 4. Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft. Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy. Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI

    Comments on Gustav Ranis' "Relative Prices in Planning for Economic Development"

    Full text link
    The authors refute the basic premise of the Ranis paper which states that the development of a newly independent economy should occur in two phases--a growth-promoting phase and an efficiency-promoting phase.Center for Research on Economic Development, University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/100704/1/ECON174.pd

    In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging

    Get PDF
    ObjectiveTo explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees.MethodsOne knee each in 30 women (age: 55 ± 6 years; BMI: 28 ± 2.4 kg/m(2); 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20° knee flexion during imaging.ResultsCartilage became significantly (p &lt; 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA.ConclusionOsteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven
    • …
    corecore