14 research outputs found
Chemical Characteristics of Zircon from Khaldzan Burgedei Peralkaline Complex, Western Mongolia
The Khaldzan Burgedei peralkaline complex is one of the potential rare metal (Zr-Nb-REE) deposits in Mongolia. The complex consists mainly of quartz syenite and granite, and zircon is the most common accessory mineral in the rocks. Based on texture and mineral paragenesis, zircon is classified into three types. Type-I zircons in the quartz syenite and granite are generally isolated and euhedral to subhedral, 25-100 p.m in size, enclosed by albite, K-feldspar, and quartz. Type-II zircons occur as subhedral to euhedral 20-150 mu m grains, with quartz, and fluorite in the metasomatized zone in the quartz syenite as well as an upper part of the granite near the contact with the quartz syenite. These zircons contain porous core parts (Type-I) or remnants of corroded xenotime-(Y) and synchysite-(Ce). Type-III zircons are observed in the hydrothermally altered zone in quartz syenite and pegmatite. These zircons are anhedral, fine-grained, 10-30 mu m in size, and occur in amphibole pseudomorphs which were replaced by quartz, fluorite, chlorite, and hematite. Laser Raman spectra show that Type-I and Type-II zircons contain high amounts of water. Among these, three types of zircons, Type-II zircons are most enriched in REE, Nb, and Th. The texture and composition of the three types of zircons indicate that Type-I, Type-II, and Type-III zircons are magmatic, metasomatic and late hydrothermal in origin, respectively, and they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system
Ni-Co Mineralization in the Intex Laterite Deposit, Mindoro, Philippines
The Intex laterite deposit in Mindoro, Philippines is derived from the weathering of the ultramafic rocks under a tropical climate. This study investigates the several types of serpentines and the effect of the degree of chemical weathering of ultramafic rocks and laterites on the enrichment of Ni in the deposit. The five types of serpentines are differentiated based on their textural features and Raman spectral data. Type I, type II, type III, and type IV serpentines contain a low amount of NiO (average 0.15 wt%), and their formation is linked to the previous exhumation of the ultramafic body. Conversely, type V serpentines show the highest NiO contents (average 1.42 wt%) and have the composition of serpentine-like garnierites, indicating a supergene origin. In the limonite horizon, goethite is the main ore mineral and shows high NiO contents of up to 1.68 wt%, whereas the Mn-oxyhydroxides (i.e., asbolane and lithiophorite-asbolane intermediate) display substantial amounts of CoO (up to 11.3 wt%) and NiO (up to 15.6 wt%). The Ultramafic Index of Alteration (UMIA) and Index of Lateritization (IOL) are used to characterize the different stages of weathering of rocks and laterites. The calculated index values correspond to a less advanced stage of weathering of the Intex laterites compared with the Berong laterites. The Berong deposit is a Ni-Co laterite deposit in the Philippines, which is formed from the weathering of the serpentinized peridotite. The less extreme degree of weathering of the Intex laterites indicates less advanced leaching, and thereby the re-distribution of Ni, Si, and Mg from the limonite towards the saprolite horizon may have resulted in the poor precipitation of talc-like (kerolite-pimelite) and sepiolite-like (sepiolite-falcondoite) phases in the studied saprolite horizon. Nickel in the Intex deposit has undergone supergene enrichment similar to other humid tropical laterite deposits
Chemical Characteristics of Zircon from Khaldzan Burgedei Peralkaline Complex, Western Mongolia
The Khaldzan Burgedei peralkaline complex is one of the potential rare metal (Zr–Nb–REE) deposits in Mongolia. The complex consists mainly of quartz syenite and granite, and zircon is the most common accessory mineral in the rocks. Based on texture and mineral paragenesis, zircon is classified into three types. Type-I zircons in the quartz syenite and granite are generally isolated and euhedral to subhedral, 25–100 μm in size, enclosed by albite, K-feldspar, and quartz. Type-II zircons occur as subhedral to euhedral 20–150 μm grains, with quartz, and fluorite in the metasomatized zone in the quartz syenite as well as an upper part of the granite near the contact with the quartz syenite. These zircons contain porous core parts (Type-I) or remnants of corroded xenotime-(Y) and synchysite-(Ce). Type-III zircons are observed in the hydrothermally altered zone in quartz syenite and pegmatite. These zircons are anhedral, fine-grained, 10–30 μm in size, and occur in amphibole pseudomorphs which were replaced by quartz, fluorite, chlorite, and hematite. Laser Raman spectra show that Type-I and Type-II zircons contain high amounts of water. Among these, three types of zircons, Type-II zircons are most enriched in REE, Nb, and Th. The texture and composition of the three types of zircons indicate that Type-I, Type-II, and Type-III zircons are magmatic, metasomatic and late hydrothermal in origin, respectively, and they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system
The crystal structure, origin, and formation of idrialite (C 22 H 14 ): Inferences from the microbeam and bulk analyses
absTracT Idrialite from Skaggs Springs, Sonoma County, California, was studied by microbeam and bulk analyses; the former include micro X-ray diffraction (µ-XRD), electron microprobe (EMP), and micro Fourier transform infrared (µ-FTIR) spectroscopic analyses, and the latter include powder XRD analysis, thermogravimetry-differential thermal analysis (TG-DTA), and carbon isotope analysis. Careful observation under a stereo-microscope clearly disclosed that the examined sample is composed of yellow and brown parts. The yellow parts were identified as idrialite with high crystallinity, whereas the brown ones were confirmed as amorphous matter by µ-XRD. Furthermore, the µ-FTIR spectra revealed that the yellow and brown parts contain hydrophobic and hydrophilic compounds, respectively. EMP analysis showed no chemical zoning and homogeneous distribution of S-bearing molecules in the yellow parts. TG-DTA disclosed that the present idrialite of the yellow part left no residue on heating up to 740 °C; this thermal behavior is similar to that of the other natural organic matter in liquid states such as petroleum and crude oil. The carbon isotopic composition was analyzed using an elemental-analyzer isotopic-ratio mass spectrometer (EA/IRMS). The δ 13 C value of the idrialite is -24.429 ± 0.090‰ (vs. V-PDB), which is akin to carbon isotopic compositions of the typical higher-plant triterpenoids contained in sedimentary organic matter. Both the yellow part (idrialite) and brown part (amorphous organic matter) occur on the coexisting minerals (opalline silica, metacinnabar, and siderite); the textural relationship indicates that the organic matter precipitated after crystallization of the associated minerals. Thus, it is suggested that the organic molecules were migrated by hydrothermal fluids and then separated into hydrophobic (idrialite) and hydrophilic (amorphous organic matter) molecules during the cooling process. Following the separation, idrialite was crystallized and then the amorphous organic matter was precipitated at the final stage of the hydrothermal activity