11 research outputs found

    Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of Mung bean sprouts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anticancer and immunomodulatory activity of mung bean sprouts (MBS) and the underlying mechanisms against human cervical and hepatocarcinoma cancer cells were explored.</p> <p>Methods</p> <p>MBS cytotoxicity and MBS-induced anticancer cytokines, TNF-α and IFN-β from cancer cells, and immunological cytokines, IL-4, IFN-γ, and IL-10 from peripheral mononuclear cells (PMNC) were assessed by MTS and ELISA assays. Apoptotic cells were investigated by flow cytometry. The expression level of apoptotic genes (Bax, BCL-2, Capsases 7–9) and cell cycle regulatory genes (cyclin D, E, and A) and tumor suppressor proteins (p27, p21, and p53) was assessed by real-time qPCR in the cancer cells treated with extract IC50.</p> <p>Results</p> <p>The cytotoxicity on normal human cells was significantly different from HeLa and HepG2 cells, 163.97 ± 5.73, 13.3 ± 0.89, and 14.04 ± 1.5 mg/ml, respectively. The selectivity index (SI) was 12.44 ± 0.83 for HeLa and 11.94 ± 1.2 for HepG2 cells. Increased levels of TNF-α and IFN-β were observed in the treated HeLa and HepG2 culture supernatants when compared with untreated cells. MBS extract was shown to be an immunopolarizing agent by inducing IFNγ and inhibiting IL-4 production by PBMC; this leads to triggering of CMI and cellular cytotoxicity. The extract induced apoptosis, in a dose and time dependent manner, in treated HeLa and HepG2, but not in untreated, cells (P < 0.05). The treatment significantly induced cell cycle arrest in G0/G1 in HeLa cells. The percentage of cells in G0/G1 phase of the treated HeLa cells increased from 62.87 ± 2.1%, in untreated cells, to 80.48 ± 2.97%. Interestingly, MBS IC50 induced the expression of apoptosis and tumor suppressor related genes in both HeLa and HepG2 cells. MBS extract succeeded in inducing cdk-inhibitors, p21, p53, and p27 in HeLa cells while it induced only p53 in HepG2 cells (P < 0.05). This is a clue for the cell type- specific interaction of the studied extract. These proteins inhibit the cyclin-cdk complexes apart from the presence of some other components that might stimulate some cyclins such as cyclin E, A, and D.</p> <p>Conclusion</p> <p>MBS extract was shown to be a potent anticancer agent granting new prospects of anticancer therapy using natural products.</p

    Role of insulin-like growth factor binding proteins in mammary gland development

    No full text
    Insulin-like growth factors (IGFs) play an important role in mammary gland development and their effects are, in turn, influenced by a family of 6 IGF-binding proteins (IGFBPs). The IGFBPs are expressed in time- and tissue-specific fashion during the periods of rapid growth and involution of the mammary gland. The precise roles of these proteins in vivo have, however, been difficult to determine. This review examines the indirect evidence (evolution, chromosomal location and roles in lower life-forms) the evidence from in vitro studies and the attempts to examine their roles in vivo, using IGFBP-deficient and over-expression models. Evidence exists for a role of the IGFBPs in inhibition of the survival effects of IGFs as well as in IGF-enhancing effects from in vitro studies. The location of the IGFBPs, often associated with the extracellular matrix, suggests roles as a reservoir of IGFs or as a potential barrier, restricting access of IGFs to distinct cellular compartments. We also discuss the relative importance of IGF-dependent versus IGF-independent effects. IGF-independent effects include nuclear localization, activation of proteases and interaction with a variety of extracellular matrix and cell surface proteins. Finally, we examine the increasing evidence for the IGFBPs to be considered as part of a larger family of extracellular matrix proteins involved in morphogenesis and tissue re-modeling
    corecore