50 research outputs found

    T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.

    Get PDF
    The clinical course of autoimmune and infectious disease varies greatly, even between individuals with the same condition. An understanding of the molecular basis for this heterogeneity could lead to significant improvements in both monitoring and treatment. During chronic infection the process of T-cell exhaustion inhibits the immune response, facilitating viral persistence. Here we show that a transcriptional signature reflecting CD8 T-cell exhaustion is associated with poor clearance of chronic viral infection, but conversely predicts better prognosis in multiple autoimmune diseases. The development of CD8 T-cell exhaustion during chronic infection is driven both by persistence of antigen and by a lack of accessory 'help' signals. In autoimmunity, we find that where evidence of CD4 T-cell co-stimulation is pronounced, that of CD8 T-cell exhaustion is reduced. We can reproduce the exhaustion signature by modifying the balance of persistent stimulation of T-cell antigen receptors and specific CD2-induced co-stimulation provided to human CD8 T cells in vitro, suggesting that each process plays a role in dictating outcome in autoimmune disease. The 'non-exhausted' T-cell state driven by CD2-induced co-stimulation is reduced by signals through the exhaustion-associated inhibitory receptor PD-1, suggesting that induction of exhaustion may be a therapeutic strategy in autoimmune and inflammatory disease. Using expression of optimal surrogate markers of co-stimulation/exhaustion signatures in independent data sets, we confirm an association with good clinical outcome or response to therapy in infection (hepatitis C virus) and vaccination (yellow fever, malaria, influenza), but poor outcome in autoimmune and inflammatory disease (type 1 diabetes, anti-neutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, idiopathic pulmonary fibrosis and dengue haemorrhagic fever). Thus, T-cell exhaustion plays a central role in determining outcome in autoimmune disease and targeted manipulation of this process could lead to new therapeutic opportunities

    Interleukin and Growth Factor Levels in Subretinal Fluid in Rhegmatogenous Retinal Detachment: A Case-Control Study

    Get PDF
    BACKGROUND: Rhegmatogenous retinal detachment (RRD) is a major cause of visual loss in developed countries. Proliferative vitreoretinopathy (PVR), an eye-sight threatening complication of RRD surgery, resembles a wound-healing process with inflammation, scar tissue formation, and membrane contraction. This study was performed to determine the possible involvement of a wide range of cytokines in the future development of PVR, and to identify predictors of PVR and visual outcome. METHODOLOGY: A multiplex immunoassay was used for the simultaneous detection of 29 different cytokines in subretinal fluid samples from patients with primary RRD. Of 306 samples that were collected and stored in our BioBank between 2001 and 2008, 21 samples from patients who developed postoperative PVR were compared with 54 age-, sex-, and storage-time-matched RRD control patients who had an uncomplicated postoperative course during the overall follow-up period. FINDINGS: Levels of IL-1α, IL-2, IL-3, IL-6, VEGF, and ICAM-1 were significantly higher (P<0.05) in patients who developed postoperative PVR after reattachment surgery than in patients with an uncomplicated postoperative course, whereas levels of IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-11, IL-12p70, IL-13, IL-15, IL-17, IL-18, IL-21, IL-22, IL-23, IL-25, IL-33, TNF-α, IFN-γ, IGF-1, bFGF, HGF, and NGF were not (P>0.05). Multivariate logistic regression analysis revealed that IL-3 (P = 0.001), IL-6 (P = 0.047), ICAM-1 (P = 0.010), and preoperative visual acuity (P = 0.026) were independent predictors of postoperative PVR. Linear regression analysis showed that ICAM-1 (P = 0.005) and preoperative logMAR visual acuity (P = 0.001) were predictive of final visual outcome after primary RRD repair. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that after RRD onset an exaggerated response of certain cytokines may predispose to PVR. Sampling at a time close to the onset of primary RRD may thus provide clues as to which biological events may initiate the development of PVR and, most importantly, may provide a means for therapeutic control

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials

    Models of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations

    A role for self-gravity at multiple length scales in the process of star formation

    No full text
    Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems(1). But self-gravity’s role at earlier times (and on larger length scales, such as 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that ‘turbulent fragmentation’ alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function(2). Here we report a ‘dendrogram’ (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact ‘pre-stellar cores’ traced by peaks of dust emission(3) are projected on the sky within one of the dendrogram’s self-gravitating ‘leaves’. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity—even of unmagnetized isothermal material—can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation(4) shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in ‘non-self-gravitating’ simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales
    corecore