4 research outputs found

    A global picture for the planar Ricker map: convergence to fixed points and identification of the stable/unstable manifolds

    Get PDF
    A quadratic Lyapunov function is demonstrated for the non-invertible planar Ricker map (Formula presented.) which shows that for (Formula presented.), and (Formula presented.) all orbits of the planar Ricker map converge to a fixed point. We establish that for 0<r, s<2, whenever a positive equilibrium exists and is locally asymptotically stable, it is globally asymptotically stable (i.e. attracts all of (Formula presented.)). Our approach bypasses and improves on methods that rely on monotonicity, which require (Formula presented.). We also use the Lyapunov function to identify the one-dimensional stable and unstable manifolds when the positive fixed point exists and is a hyperbolic saddle

    Hidden dynamics of soccer leagues: the predictive ‘power’ of partial standings

    Get PDF
    Objectives Soccer leagues reflect the partial standings of the teams involved after each round of competition. However, the ability of partial league standings to predict end-of-season position has largely been ignored. Here we analyze historical partial standings from English soccer to understand the mathematics underpinning league performance and evaluate the predictive ‘power’ of partial standings. Methods Match data (1995-2017) from the four senior English leagues was analyzed, together with random match scores generated for hypothetical leagues of equivalent size. For each season the partial standings were computed and Kendall’s normalized tau-distance and Spearman r-values determined. Best-fit power-law and logarithmic functions were applied to the respective tau-distance and Spearman curves, with the ‘goodness-of-fit’ assessed using the R2 value. The predictive ability of the partial standings was evaluated by computing the transition probabilities between the standings at rounds 10, 20 and 30 and the final end-of-season standings for the 22 seasons. The impact of reordering match fixtures was also evaluated. Results All four English leagues behaved similarly, irrespective of the teams involved, with the tau-distance conforming closely to a power law (R2>0.80) and the Spearman r-value obeying a logarithmic function (R2>0.87). The randomized leagues also conformed to a power-law, but had a different shape. In the English leagues, team position relative to end-of-season standing became ‘fixed’ much earlier in the season than was the case with the randomized leagues. In the Premier League, 76.9% of the variance in the final standings was explained by round-10, 87.0% by round-20, and 93.9% by round-30. Reordering of match fixtures appeared to alter the shape of the tau-distance curves. Conclusions All soccer leagues appear to conform to mathematical laws, which constrain the league standings as the season progresses. This means that partial standings can be used to predict end-of-season league position with reasonable accuracy

    Carrying Simplices for Competitive Maps

    No full text
    The carrying simplex is a finite-dimensional, attracting Lipschitz invariant manifold that is commonly found in both continuous and discrete-time competition models from Ecology. It can be studied using the graph transform and cone conditions often applied to study attractors in continuous-time finite and infinite-dimensional models from applied mathematics, including chemical reaction networks and reaction diffusion equations. Here we show that the carrying simplex can also be studied from the point of view of the graph transform and cone conditions. However, unlike many of the models mentioned above, we do not use—at least directly—a gap condition that is often used to establish existence of a globally and exponentially attracting manifold. Instead we use contraction of phase volume to ‘suck’ hypersurfaces together uniformly, and ultimately onto the carrying simplex. We give a proof of the existence of the carrying simplex for a class of competitive maps, viewed here as also normally monotone maps. The result is not new, but is carried out in the framework of the graph transform to indicate how the carrying simplex relates to other well-known classes of invariant manifolds. We also discuss the relation between hypersurfaces with positive normals, unordered hypersurfaces and also the type of maps that preserve these types of hypersurfaces. Finally we review several examples from models in Ecology where the carrying simplex is known to exist
    corecore