14 research outputs found

    Psychiatric and cognitive phenotype in children and adolescents with myotonic dystrophy

    Get PDF
    Myotonic dystrophy type 1 (DM1) is the most frequent inherited neuromuscular disorder. The juvenile form has been associated with cognitive and psychiatric dysfunction, but the phenotype remains unclear. We reviewed the literature to examine the psychiatric phenotype of juvenile DM1 and performed an admixture analysis of the IQ distribution of our own patients, as we hypothesised a bimodal distribution. Two-thirds of the patients had at least one DSM-IV diagnosis, mainly attention deficit/ hyperactivity disorder and anxiety disorder. Two-thirds had learning disabilities comorbid with mental retardation on one hand, but also attention deficit, low cognitive speed and visual spatial impairment on the other. IQ showed a bi-modal distribution and was associated with parental transmission. The psychiatric phenotype in juvenile DM1 is complex. We distinguished two different phenotypic subtypes: one group characterised by mental retardation, severe developmental delay and maternal transmission; and another group characterised by borderline full scale IQ, subnormal development and paternal transmission

    The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    Get PDF
    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures
    corecore