32 research outputs found

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    Validation of biomarkers to predict response to immunotherapy in cancer: Volume I — pre-analytical and analytical validation

    Full text link

    Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    No full text
    Item does not contain fulltextAs several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle

    Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle

    No full text
    Contains fulltext : 186402.pdf (publisher's version ) (Closed access)OBJECTIVE: To investigate the influence of decreased mechanical loading on the density and mechanical properties of the cancellous bone of the human mandibular condyle. DESIGN: Destructive compressive mechanical tests were performed on cancellous bone specimens.Background. Reduced masticatory function in edentate people leads to a reduction of forces acting on the mandible. As bone reacts to its mechanical environment a change in its material properties can be expected. METHODS: Cylindrical bone specimens were obtained from dentate and edentate embalmed cadavers. Mechanical parameters were determined in the axial and in the transverse directions. Subsequently, density parameters were determined according to a method based on Archimedes' principle. RESULTS: The apparent density and volume fraction of the bone were about 18% lower in the edentate group; no age-related effect on density was found. The decrease of bone in the edentate group was associated with a lower stiffness and strength (about 22% and 28%, respectively). The ultimate strain, however, did not differ between the two groups. Both groups had similar mechanical anisotropy; in axial loading the bone was stiffer and stronger than in transverse loading. CONCLUSIONS: Reduced mechanical load had affected the density and herewith the mechanical properties of condylar cancellous bone, but not its anisotropy. RELEVANCE: The change in material properties of the cancellous bone after loss of teeth indicate that the mandibular condyle is sensitive for changes in its mechanical environment. Therefore, changes in mechanical loading of the condyle have to be accounted for in surgical procedures of the mandible

    Initial stability of circumferential meshes with impacted bone allografts for massive femoral defects

    No full text
    When the proximal femur is absent due to a failed femoral stem in total hip arthroplasty, impacted bone grafts contained within circumferential meshes could be an alternative reconstructive method. The purpose of this study was to analyse the initial resistance to axial and rotational forces in a fresh frozen bovine model with complete loss of the proximal femur reconstructed with a circumferential metal mesh, impacted bone allografts and a long cemented stem. Four bovine femurs with a complete proximal bone defect were reconstructed with a circumferential mesh, impacted bone grafts and a cemented stem. The results were compared with four intact femurs using the same implant. Under axial load, subsidence was observed at an average of 617 kg in the experimental group, and a cortical fracture occured at 1335 kg in the control group. Under rotational load, experimental femurs failed at an average of 79 kg and the control femurs fractured at 260 kg. This model provided 50% of the resistance to axial load and 30% of the resistance to rotational load compared to an intact femur, which is enough to resist physiological load. This stability encourages the use of circumferential meshes, impacted bone allografts and cemented stems in revision hip surgery with massive bone loss

    Impaction allograft with cement for the revision of the femoral component. A minimum 39-month follow-up study with the use of the Exeter stem in Asian hips

    No full text
    We report the results of impaction bone grafting of the femoral side in revision total hip arthroplasty in Asian hips (South Korean patients) in which the surgery was performed with the use of the Exeter stem. The minimum follow-up was 39 months (mean, 48.4; range, 39–66). There was subsidence of the cement-graft interface (<1 mm) in three hips (5%), of the stem-cement interface (<1 mm) in 12 hips (21%) and of the stem-cement interface (1–2 mm) in 14 hips (25%). Five hips (9%) developed intraoperative femoral fracture and two hips (4%) femoral perforation in revision. The complications of femoral fracture and subsidence did not have an adverse effect on the final clinical outcomes. The impaction of fresh-frozen allograft and use of a cemented, polished, tapered stem (Exeter stem) were also successful with good clinical and radiographic outcomes in our study of Asian hips (South Korean patients). However, we used smaller stems than the usual ones used for Western patients because of the smaller femur sizes
    corecore