8 research outputs found

    Ginkgo Biloba Extract Ameliorates Oxidative Phosphorylation Performance and Rescues Aβ-Induced Failure

    Get PDF
    Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer's disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Abeta) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Abeta-induced defects in energy metabolism

    Structural features of the rat GFAP gene and identification of a novel alternative transcript

    No full text
    The glial fibrillary acidic protein (GFAP) is expressed in a cell-specific manner and represents the major subunit of intermediate filaments of astroglial cells. The knowledge of the gene structure is an important step for further understanding the mechanisms of cell-specific expression. In the present study, we report the complete sequence of the rat GFAP gene and provide evidence for the existence, in the rat brain, of a novel alternative transcript. Since three different transcripts, indicated as GFAP alpha, beta, and gamma, have been previously reported (Feinstein et al, [1992] J. Neurosci. Res. 32:1-14; Zelenika et al. [1995] Mol. Brain Res. 30:251-258), we called this novel mRNA isoform GFAP delta. It is generated by the alternative splicing of a novel exon located in the classic seventh intron. This alternative exon (called VII+) contains a 101-bp coding sequence in frame with exon VII and interrupted by a stop codon TAA at position +5451. Therefore, the novel GFAP delta transcript encodes for an hypothetical GFAP where the forty-two carboxyterminal amino acids encoded by exon VIII and IX are replaced by thirty-three amino acids encoded by exon VII+. Northern blot analysis with a specific probe for exon VII+ revealed a 4.2-kb mRNA, expressed in several brain areas, but absent in extracerebral tissues (lung, heart, kidney, liver, spleen). The previously discovered GFAP isoforms (alpha, beta, and gamma) produce hypothetical translation products differing in the aminoterminal Head domain. The present data suggest, for the first time, the possible existence of GFAP isoforms differing in the carboxy-terminal Tail domai

    Age-related chances of mitochondrial cytochrome C oxidase and F(0)F(1)-ATP synthase subunit contents in rat cerebral cortex

    No full text
    The levels of subunits I, II/III, and IV of cytochrome c oxidase and of subunits alpha. beta and gamma of F(0)F(1)-ATP synthase in inner mitochondrial membrane proteins purified from cerebral cortex of rat at 2, 6, 12, 18, 24, 26 months of age were analyzed by Western blot. Age-related changes in the content of subunits, encoded either in mitochondrial or nuclear DNA, were observe

    Regulation of cytochrome c oxidase and FoF1-ATPase subunits expression in rat brain during aging

    No full text
    In the present study we analyzed the age-dependent changes of mRNA levels for cytochrome c oxidase and FoF1-ATP synthase subunits in rat cerebral cortex and cerebellum. To establish whether the regulation of expression is transcriptional or post-transcriptional, the results were compared to those related to protein subunits levels, of the same enzymatic complexes, previously observed. The different patterns of age-related changes of mRNA subunits, in particular the lower increments, compared with those related to protein subunits, indicate that post-transcriptional mechanisms of regulation might be involved in the coordinated expression of the various subunits of each complex. Northern blotting analyses of RNA from the cerebellum of rats at the various ages, showed also differences in age-dependent patterns of transcription between cerebral cortex and cerebellum. Moreover, the major age-dependent changes of mitochondrial-encoded subunits, compared with the nuclear-encoded ones, previously observed at proteins level, occur also during transcriptio

    Changes of mitochondrial cytochrome c oxidase and FoF1 ATP synthase subunits in rat cerebral cortex during aging

    No full text
    The contents of subunits I, II/III, and IV of cytochrome c oxidase and of subunits alpha, beta and gamma of FoF1 ATP synthase in inner mitochondrial membrane proteins purified from cerebral cortex of rat at 2, 6, 12, 18, 24, and 26 months of age were analyzed by western blot. Age-related changes in the content of subunits, either of mitochondrial or nuclear origin, were observed. All the cytochrome c oxidase (COX) subunits examined showed an age-related increase from 2-month-old rats up to 24 months with a decrease at the oldest age (26 months). The same pattern of age-dependent changes was observed for gamma ATP synthase, while the alpha and beta subunits increased progressively up to 26 month

    Ginkgo biloba Extract EGb 761®: From an Ancient Asian Plant to a Modern European Herbal Medicinal Product

    No full text
    corecore