14 research outputs found

    Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies.</p> <p>Methods</p> <p>HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT™, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence <it>in situ </it>hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested.</p> <p>Results</p> <p>The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio).</p> <p>Conclusion</p> <p>HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases.</p

    Predicting Breast Cancer Response to Neoadjuvant Chemotherapy Using Pretreatment Diffuse Optical Spectroscopic-Texture Analysis

    Get PDF
    Purpose: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pre-treatment DOS functional maps for predicting LABC response to NAC. Methods: LABC patients (n = 37) underwent DOS-breast imaging before starting neoadjuvant chemotherapy. Breast-tissue parametric maps were constructed and texture analyses were performed based on grey level co-occurrence matrices (GLCM) for feature extraction. Ground-truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS-textural features computed on volumetric tumour data before the start of treatment (i.e. “pre-treatment”) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naïve Bayes, and k-nearest neighbour (k-NN) classifiers. Results: Data indicated that textural characteristics of pre-treatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2-homogeneity resulted in the highest accuracy amongst univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5 and 89.0%, respectively and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-Contrast + HbO2-Homogeneity which resulted in a %Sn/%Sp = 78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that pre-treatment tumour DOS-texture features can predict breast cancer response to NAC and potentially guide treatments

    Basal Cell Carcinoma with Matrical Differentiation

    No full text

    De Novo Pathway-Based Classification of Breast Cancer Subtypes

    No full text
    Breast cancer is a heterogeneous disease for which various clinically relevant subtypes have been reported. These subtypes are characterized by molecular differences which direct treatment selection. The state of the art for breast cancer subtyping utilizes histochemistry or gene expression to measure a few selected markers. However, classification based on molecular pathways (rather than individual markers) is a more robust way to classify breast cancer samples into known subtypes.Here, we present PathClass, a web application that allows its users to predict breast cancer subtypes using various traditional as well as advanced methods. This includes methods based on classical gene expression panels as well as de novo pathway-based predictors. Users can predict labels for datasets in the Gene Expression Omnibus or upload their own expression profiling data.Availability: https://pathclass.compbio.sdu.dk/

    Transcriptional profiling of formalin fixed paraffin embedded tissue : pitfalls and recommendations for identifying biologically relevant changes

    Get PDF
    Expression profiling techniques have been used to study the biology of many types of cancer but have been limited to some extent by the requirement for collection of fresh tissue. In contrast, formalin fixed paraffin embedded (FFPE) samples are widely available and represent a vast resource of potential material. The techniques used to handle the degraded and modified RNA from these samples are relatively new and all the pitfalls and limitations of this material for whole genome expression profiling are not yet clarified. Here, we analyzed 70 FFPE tongue carcinoma samples and 17 controls using the whole genome DASL array covering nearly 21000 genes. We identified that sample age is related to quality of extracted RNA and that sample quality influences apparent expression levels in a non-random manner related to gene probe sequence, leading to spurious results. However, by removing sub-standard samples and analysing only those 28 cancers and 15 controls that had similar quality we were able to generate a list of 934 genes significantly altered in tongue cancer compared to control samples of tongue. This list contained previously identified changes and was enriched for genes involved in many cancer-related processes such as tissue remodelling, inflammation, differentiation and apoptosis. Four novel genes of potential importance in tongue cancer development and maintenance, SH3BGL2, SLC2A6, SLC16A3 and CXCL10, were independently confirmed, validating our data. Hence, gene expression profiling can be performed usefully on archival material if appropriate quality assurance steps are taken to ensure sample consistency and we present some recommendations for the use of FFPE material based on our findings
    corecore