14 research outputs found

    Scientific, sustainability and regulatory challenges of cultured meat

    Get PDF
    Producing meat without the drawbacks of conventional animal agriculture would greatly contribute to future food and nutrition security. This Review Article covers biological, technological, regulatory and consumer acceptance challenges in this developing field of biotechnology. Cellular agriculture is an emerging branch of biotechnology that aims to address issues associated with the environmental impact, animal welfare and sustainability challenges of conventional animal farming for meat production. Cultured meat can be produced by applying current cell culture practices and biomanufacturing methods and utilizing mammalian cell lines and cell and gene therapy products to generate tissue or nutritional proteins for human consumption. However, significant improvements and modifications are needed for the process to be cost efficient and robust enough to be brought to production at scale for food supply. Here, we review the scientific and social challenges in transforming cultured meat into a viable commercial option, covering aspects from cell selection and medium optimization to biomaterials, tissue engineering, regulation and consumer acceptance

    Optimization of Microalgae Photosynthetic Metabolism to Close the Gap with Potential Productivity

    No full text
    Microalgae metabolism is powered only by sustainable energy and carbon sources, representing a valuable alternative to develop clean industrial processes. Moreover, this group of unicellular photosynthetic microorganisms shows high versatility, including species from different ecological niches which evolved a variety of pathways to synthesize a wide spectrum of bioactive compounds. However, sophisticated industrial cultivation systems are needed to control the stability of the production process during intensive cultivation. This artificial environment is far different from the ecological niches that shaped these organisms, limiting photon-to-biomass conversion efficiency (PBCE) to values far below those achieved at the lab scale. Moreover, large-scale cultivation has high energetic and operational costs due to initial investment and maintenance, that current PBCE values cannot compensate for, preventing commercial feasibility. Tuning microalgae photosynthetic metabolism represents an unavoidable challenge to improve PBCE and meet the theoretical potential of these organisms
    corecore