63 research outputs found

    Effects of co-administered dexamethasone and diclofenac potassium on pain, swelling and trismus following third molar surgery

    Get PDF
    BACKGROUND: The apparent interactions between the mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDS) and steroids suggest that co-therapy may provide beneficial inflammatory and pain relief in the absence of side effects. The aim of the study was to compare the effect of co-administered dexamethasone and diclofenac potassium (diclofenac K) with diclofenac K alone on the postoperative pain, swelling and trismus after surgical removal of third molars. PATIENTS AND METHODS: A prospective randomized double-blind study was conducted at the Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Nigeria. A total of 100 patients were randomly allocated to two treatment groups of dexamethasone (prophylactic 8 mg and postoperative 4 mg IV) and diclofenac K (50 mg Oral before and after surgery), and diclofenac K alone (as with first group). The overall analgesic efficacy of the drug combinations was assessed postoperatively by determination of pain intensity using a category rating scale. Facial swelling was measured using a tape measure placed from tragus to gonion to tragus, while interincisal mouth-opening of patients was measured using a vernier calibrated caliper pre-operatively and post-operatively. RESULTS: Co-administration of dexamethasone and diclofenac K was significantly superior to diclofenac alone for the relief of pain (P < 0.05), and facial swelling up to post-operative 48 hour (P < 0.05). However, there was no significant difference for trismus relief between the two medication protocols (P > 0.05). CONCLUSION: This study illustrates enhanced effects of co-administered dexamethasone and diclofenac K on short-term post-operative pain and swelling, compared to diclofenac potassium alone in third molar surgery

    Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size.</p> <p>Method</p> <p>Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 Ă— 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically.</p> <p>Results</p> <p>A comparison of the gelatin blocks and hind limbs showed significant differences (<it>p </it>< 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path.</p> <p>Conclusion</p> <p>Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles.</p

    Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria

    No full text
    Mitochondria perform a central function in the biogenesis of cellular iron–sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p

    Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor

    No full text
    Pam18, the J-protein cochaperone of the Hsp70-based mitochondrial import motor, forms a heterodimer with the structurally related protein Pam16. Genetic and biochemical studies suggest a critical role of this interaction in maintaining Pam18's association with the translocon rather than its previously proposed regulatory role
    • …
    corecore