69 research outputs found

    Tripeptide tyroserleutide plus doxorubicin: therapeutic synergy and side effect attenuation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tripeptide tyroserleutide (YSL) is a novel small molecule anti-tumor polypeptide that has been shown to inhibit the growth of human liver cancer cells. In this study, we investigated the effects of YSL plus doxorubicin on the growth of human hepatocellular carcinoma BEL-7402 cells that had been transplanted into nude mice.</p> <p>Methods</p> <p>Nude mice bearing human hepatocellular carcinoma BEL-7402 tumors were treated with successive intraperitoneal injections of saline; low-, mid-, or high-dose doxorubicin; or low-, mid-, or high-dose doxorubicin plus YSL. Effects on the weight and volume of the tumors were evaluated.</p> <p>Results</p> <p>Co-administration of YSL and high-dose doxorubicin (6 mg/kg every other day) prolonged the survival time of tumor-bearing mice as compared to high-dose doxorubicin alone. As well, the anti-tumor effects of mid- and low-dose doxorubicin (2 and 0.7 mg/kg every other day, respectively) were enhanced when supplemented with YSL; the tumor growth inhibition rates for YSL plus doxorubicin were greater than the inhibition rates for the same dosages of doxorubicin alone. The combination of YSL and doxorubicin decreased chemotherapy-associated weight loss, leukocyte depression, and heart, liver, and kidney damage as compared to doxorubicin alone.</p> <p>Conclusion</p> <p>The combination of YSL plus doxorubicin enhances the anti-tumor effect and reduces the side effects associated with doxorubicin chemotherapy.</p

    Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim

    Get PDF
    Background: A common approach to cancer therapy in clinical practice is the combination of several drugs to boost the anticancer activity of available drugs while suppressing their unwanted side effects. In this regard, we examined the efficacy of combination treatment with the widely-used genotoxic drug doxorubicin and the mitochondriotoxic Hsp90 inhibitor gamitrinib to exploit disparate stress signaling pathways for cancer therapy.Methods: The cytotoxicity of the drugs as single agents or in combination against several cancer cell types was analyzed by MTT assay and the synergism of the drug combination was evaluated by calculating the combination index. To understand the molecular mechanism of the drug synergism, stress signaling pathways were analyzed after drug combination. Two xenograft models with breast and prostate cancer cells were used to evaluate anticancer activity of the drug combination in vivo. Cardiotoxicity was assessed by tissue histology and serum creatine phosphokinase concentration.Results: Gamitrinib sensitized various human cancer cells to doxorubicin treatment, and combination treatment with the two drugs synergistically increased apoptosis. The cytotoxicity of the drug combination involved activation and mitochondrial accumulation of the proapoptotic Bcl-2 family member Bim. Activation of Bim was associated with increased expression of the proapoptotic transcription factor C/EBP-homologous protein and enhanced activation of the stress kinase c-Jun N-terminal kinase. Combined drug treatment with doxorubicin and gamitrinib dramatically reduced in vivo tumor growth in prostate and breast xenograft models without increasing cardiotoxicity.Conclusions: The drug combination showed synergistic anticancer activities toward various cancer cells without aggravating the cardiotoxic side effects of doxorubicin, suggesting that the full therapeutic potential of doxorubicin can be unleashed through combination with gamitrinib.open

    Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring

    Get PDF
    More women are living with and surviving breast cancer, because of improvements in breast cancer care. Trastuzumab (Herceptin®▾) has significantly improved outcomes for women with HER2-positive tumours. Concerns about the cardiac effects of trastuzumab (which fundamentally differ from the permanent myocyte loss associated with anthracyclines) led to the development of cardiac guidelines for adjuvant trials, which are used to monitor patient safety in clinical practice. Clinical experience has shown that the trial protocols are not truly applicable to the breast cancer population as a whole, and exclude some women from receiving trastuzumab, even though they might benefit from treatment without long-term adverse cardiac sequelae. Consequently, five oncologists who recruited patients to trastuzumab trials, some cardiologists with whom they work, and a cardiovascular lead general practitioner reviewed the current cardiac guidelines in the light of recent safety data and their experience with adjuvant trastuzumab. The group devised recommendations that promote proactive pharmacological management of cardiac function in trastuzumab-treated patients, and that apply to all patients who are likely to receive standard cytotoxic chemotherapy. Key recommendations include: a monitoring schedule that assesses baseline and on-treatment cardiac function and potentially reduces the overall number of assessments required; intervention strategies with cardiovascular medication to improve cardiac status before, during, and after treatment; simplified rules for starting, interrupting and discontinuing trastuzumab; and a multidisciplinary approach to breast cancer care

    Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells

    Get PDF
    Doxorubicin (DOX) is an antitumour agent for different types of cancer, but the dose-related cardiotoxicity limits its clinical use. To prevent this side effect we have developed the flavonoid monohydroxyethylrutoside (monoHER), a promising protective agent, which did not interfere with the antitumour activity of DOX. To obtain more insight in the mechanism underlying the selective protective effects of monoHER, we investigated whether monoHER (1 mM) affects DOX-induced apoptosis in neonatal rat cardiac myocytes (NeRCaMs), human endothelial cells (HUVECs) and the ovarian cancer cell lines A2780 and OVCAR-3. DOX-induced cell death was effectively reduced by monoHER in heart, endothelial and A2780 cells. OVCAR-3 cells were highly resistant to DOX-induced apoptosis. Experiments with the caspase-inhibitor zVAD-fmk showed that DOX-induced apoptosis was caspase-dependent in HUVECs and A2780 cells, whereas caspase-independent mechanisms seem to be important in NeRCaMs. MonoHER suppressed DOX-dependent activation of the mitochondrial apoptotic pathway in normal and A2780 cells as illustrated by p53 accumulation and activation of caspase-9 and -3 cleavage. Thus, monoHER acts by suppressing the activation of molecular mechanisms that mediate either caspase-dependent or -independent cell death. In light of the current work and our previous studies, the use of clinically achievable concentrations of monoHER has no influence on the antitumour activity of DOX whereas higher concentrations as used in the present study could influence the antitumour activity of DOX

    Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101 - Breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MANTICORE 101 - Breast (Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research) is a randomized trial to determine if conventional heart failure pharmacotherapy (angiotensin converting enzyme inhibitor or beta-blocker) can prevent trastuzumab-mediated left ventricular remodeling, measured with cardiac MRI, among patients with HER2+ early breast cancer.</p> <p>Methods/Design</p> <p>One hundred and fifty-nine patients with histologically confirmed HER2+ breast cancer will be enrolled in a parallel 3-arm, randomized, placebo controlled, double-blind design. After baseline assessments, participants will be randomized in a 1:1:1 ratio to an angiotensin-converting enzyme inhibitor (perindopril), beta-blocker (bisoprolol), or placebo. Participants will receive drug or placebo for 1 year beginning 7 days before trastuzumab therapy. Dosages for all groups will be systematically up-titrated, as tolerated, at 1 week intervals for a total of 3 weeks. The primary objective of this randomized clinical trial is to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer, as measured by 12 month change in left ventricular end-diastolic volume using cardiac MRI. Secondary objectives include 1) determine the evolution of left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer, 2) understand the mechanism of trastuzumab mediated cardiac toxicity by assessing for the presence of myocardial injury and apoptosis on serum biomarkers and cardiac MRI, and 3) correlate cardiac biomarkers of myocyte injury and extra-cellular matrix remodeling with left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer.</p> <p>Discussion</p> <p>Cardiac toxicity as a result of cancer therapies is now recognized as a significant health problem of increasing prevalence. To our knowledge, MANTICORE will be the first randomized trial testing proven heart failure pharmacotherapy in the prevention of trastuzumab-mediated cardiotoxicity. We expect the findings of this trial to provide important evidence in the development of guidelines for preventive therapy.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01016886">NCT01016886</a></p

    Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

    Get PDF
    The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
    corecore