37 research outputs found

    Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Background: Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods: Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 x 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results: The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion: Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment.30Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Radiology of the Hospital Estadual Sumare UNICAMPSCOGConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [401327/05-1

    Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T-cell based immunotherapy for lung cancer (LC) could be a promising and novel therapeutic approach. Six-transmembrane epithelial antigen of the prostate (STEAP) and the polycomb group protein enhancer of zeste homolog 2 (EZH2) are highly expressed in LC and since the expression of molecules in normal tissue is significantly lower as compared to tumor cells, these proteins are considered as potential tumor-associated antigens (TAAs) for developing T-cell based immunotherapy.</p> <p>Methods</p> <p>We assessed the capacity of predicted CD4 T-cell epitopes from STEAP and EZH2 to induce anti-tumor immune responses to LC cell lines.</p> <p>Results</p> <p>Out of several predicted epitopes, two synthetic peptides, STEAP<sub>281-296 </sub>and EZH2<sub>95-109</sub>, were effective in inducing CD4 T-cell responses that were restricted by HLA-DR1, DR15, or DR53 molecules, indicating that the peptides function as promiscuous T-cell epitopes. Moreover, STEAP<sub>281-296 </sub>and EZH2<sub>95-109</sub>-reactive T-cells could directly recognize STEAP or EZH2 expressing LC cells in an HLA-DR restricted manner. In addition, some STEAP-reactive T-cells responded to STEAP+ tumor cell lysates presented by autologous dendric cells. Most significantly, both of these peptides were capable of stimulating <it>in vitro </it>T-cell responses in patients with LC.</p> <p>Conclusions</p> <p>Peptides STEAP<sub>281-296 </sub>and EZH2<sub>95-109 </sub>function as strong CD4 T-cell epitopes that can elicit effective anti-tumor T-cell responses against STEAP or EZH2 expressing LC. These observations may facilitate the translation of T-cell based immunotherapy into the clinic for the treatment of LC.</p

    Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients

    Get PDF
    Here, we present results from a clinical trial employing a new vaccination method using dendritic cells (DCs) transfected with mRNA from allogeneic prostate cancer cell lines (DU145, LNCaP and PC-3). In all, 20 patients were enrolled and 19 have completed vaccination. Each patient received at least four weekly injections with 2 × 107 transfected DCs either intranodally or intradermally. Safety and feasibility of vaccination were determined. Immune responses were measured as delayed-type hypersensitivity and by in vitro immunoassays including ELISPOT and T-cell proliferation in pre- and postvaccination peripheral blood samples. Serum prostate-specific antigen (PSA) levels and bone scans were monitored. No toxicity or serious adverse events related to vaccinations were observed. A total of 12 patients developed a specific immune response to tumour mRNA-transfected DCs. In total, 13 patients showed a decrease in log slope PSA. This effect was strengthened by booster vaccinations. Clinical outcome was significantly related to immune responses (n=19, P=0.002, r=0.68). Vaccination with mRNA-transfected DCs is safe and results in cellular immune responses specific for antigens encoded by mRNA derived from the prostate cancer cell lines. The observation that in some patients vaccination affected the PSA level suggests that this approach may become useful as a treatment modality for prostate cancer patients

    Pseudoneoplastic lesions of the testis and paratesticular structures

    Get PDF
    Pseudotumors or tumor-like proliferations (non-neoplastic masses) and benign mimickers (non-neoplastic cellular proliferations) are rare in the testis and paratesticular structures. Clinically, these lesions (cysts, ectopic tissues, and vascular, inflammatory, or hyperplastic lesions) are of great interest for the reason that, because of the topography, they may be relevant as differential diagnoses. The purpose of this paper is to present an overview of the pseudoneoplasic entities arising in the testis and paratesticular structures; emphasis is placed on how the practicing pathologist may distinguish benign mimickers and pseudotumors from true neoplasia. These lesions can be classified as macroscopic or microscopic mimickers of neoplasia

    Synaptic Wnt signaling—a contributor to major psychiatric disorders?

    Get PDF
    Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes

    Survivin: a unique target for tumor therapy

    Full text link
    corecore