3 research outputs found

    On dynamic interactions between body motion and fluid motion

    No full text
    This contribution on dynamic fluid-body interactions concentrates on applying mathematical/analytical ideas to complement direct numerical studies. The typical body may be of given shape or flexible depending on the context. In the background there are numerous real-world motivations in industry, biomedical and environmental applications, many of which involve high flow rates. A review of ideas developed over the last decade for cases of high flow rates first addresses inviscid approaches to one or more bodies free to move within a channel flow, a skimming sharp-edged body on a free surface, the sinking of a body in water and the rocking or rolling of a body on a solid surface, before moving on to more recent viscous-inviscid approaches for channel flows and boundary layers. The beginnings of certain current research projects are also outlined. These concern models of liftoff of a body from a solid surface, the impact of a smooth body during skimming and viscous-inviscid effects in the presence of more than one freely moving body. Linear and nonlinear mathematical properties as appropriate are described

    Oblique impact of a smooth body on a thin layer of inviscid liquid

    No full text
    The two-dimensional motion of a rigid body with a smooth surface is studied during its oblique impact on a liquid layer. The problem is coupled: the three degrees of freedom of the moving body are determined together with the liquid flow and the hydrodynamic pressure along the wetted part of the body surface. The impact process is divided into two temporal stages. During the first stage, the wetted region expands at a high speed with jetting flows at both ends of the wetted region. In the second stage, the free surface of the liquid is allowed to separate from the body surface. The position of the separation point is determined with the help of the Brillouin–Villat condition. Calculations are performed for elliptic cylinders of different masses and with different orientations and speeds before the impact. The horizontal and vertical displacements of the body, as well as its angle of rotation and corresponding speeds are investigated. The model developed remains valid until the body either touches the bottom of the liquid or rebounds from the liquid
    corecore