23 research outputs found

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light

    Numerical analysis of the spectral response of an NSOM measurement

    No full text
    Near-field Scanning Optical Microscopy (NSOM) is a powerful tool for investigating optical field with resolution greater than the diffraction limit. In this work, we study the spectral response that would be obtained from an aperture NSOM system using numerical calculations. The sample used in this study is a bowtie nanoaperture that has been shown to produce concentrated and enhanced field. The near- and far-field distributions from a bowtie aperture are also calculated and compared with what would be obtainable from a NSOM system. The results demonstrate that it will be very difficult to resolve the true spectral content of the near-field using aperture NSOM. On the other hand, the far-field response may be used as a guide to the near-field spectrum

    Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation

    No full text
    The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0-40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments. © The Author(s) 20166

    The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection

    No full text

    Artificial intelligence in drug design

    No full text
    corecore