61 research outputs found

    Dimensionless scaling of heat-release-induced planar shock waves in near-critical CO2

    Full text link
    We performed highly resolved one-dimensional fully compressible Navier-Stokes simulations of heat-release-induced compression waves in near-critical CO2. The computational setup, inspired by the experimental setup of Miura et al., Phys. Rev. E, 2006, is composed of a closed inviscid (one-dimensional) duct with adiabatic hard ends filled with CO2 at three supercritical pressures. The corresponding initial temperature values are taken along the pseudo-boiling line. Thermodynamic and transport properties of CO2 in near-critical conditions are modeled via the Peng-Robinson equation of state and Chung's Method. A heat source is applied at a distance from one end, with heat release intensities spanning the range 10^3-10^11 W/m^2, generating isentropic compression waves for values < 10^9 W/m^2. For higher heat-release rates such compressions are coalescent with distinct shock-like features (e.g. non-isentropicity and propagation Mach numbers measurably greater than unity) and a non-uniform post-shock state is present due to the strong thermodynamic nonlinearities. The resulting compression wave intensities have been collapsed via the thermal expansion coefficient, highly variable in near-critical fluids, used as one of the scaling parameters for the reference energy. The proposed scaling applies to isentropic thermoacoustic waves as well as shock waves up to shock strength 2. Long-term time integration reveals resonance behavior of the compression waves, raising the mean pressure and temperature at every resonance cycle. When the heat injection is halted, expansion waves are generated, which counteract the compression waves leaving conduction as the only thermal relaxation process. In the long term evolution, the decay in amplitude of the resonating waves observed in the experiments is qualitatively reproduced by using isothermal boundary conditions.Comment: As submitted to AIAA SciTech 2017, available at http://arc.aiaa.org/doi/pdf/10.2514/6.2017-008

    Enhancement of R1234ze(Z) pool boiling heat transfer on horizontal titanium tubes for high-temperature heat pumps

    Get PDF
    R1234ze(Z), which has a global warming potential of less than 1, is a promising alternative refrigerant for hightemperatureheat pumps designed for heat recovery in the industrial sector. The use of titanium as the material for heat exchangers exposed to acid exhaust is one solution to prevent oxidation. In this study, the pool boiling heat transfer characteristics outside of horizontal titanium tubes were experimentally investigated for R1234ze(Z). Aplain tube and three enhanced titanium tubes were tested at saturation temperatures from 10 to 60 °C and heatfluxes from 0.55 to 79.8 kW m-2. Compared to the plain tube, the tested enhanced tube exhibited a 2.8 to 5.1 timeshigher heat transfer coefficient, on average, in the test range, which could compensate for the disadvantage in thethermal conductivity of titanium. The enhancement ratio predominantly depends on the saturation temperatureand the wall heat flux. At conditions of higher saturation temperatures and lower heat flux, where smaller bubblesare observed, test tubes with smaller fin spaces exhibit higher heat transfer coefficients. The experimental resultsindicate the importance of fin geometry optimization to the operation conditions

    Generalized conductance sum rule in atomic break junctions

    Full text link
    When an atomic-size break junction is mechanically stretched, the total conductance of the contact remains approximately constant over a wide range of elongations, although at the same time the transmissions of the individual channels (valence orbitals of the junction atom) undergo strong variations. We propose a microscopic explanation of this phenomenon, based on Coulomb correlation effects between electrons in valence orbitals of the junction atom. The resulting approximate conductance quantization is closely related to the Friedel sum rule.Comment: 4 pages, 1 figure, appears in Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 200

    Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    Get PDF
    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 +/- 5 ppm to 1100 +/- 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 +/- 0.1 photoelectrons/keV improved to 5.0 +/- 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 +/- 0.2)% ({\sigma}) to (3.5 +/- 0.2)% ({\sigma}) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component

    Technical Note:

    No full text

    Performance Metrics for Pulse Detonation Combustor Turbine Hybrid Systems

    No full text

    Propellant Quantity Gauging Using the Radio Frequency Mass Gauge

    No full text
    • …
    corecore