5 research outputs found

    Elimination of 0+0^+ spurious states in the quasiparticle time blocking approximation

    Full text link
    The quasiparticle time blocking approximation (QTBA) is considered as a model for the description of excitations in open-shell nuclei. The QTBA is an extension of the quasiparticle random phase approximation that includes quasiparticle-phonon coupling. In the present version of the QTBA, the pairing correlations are included within the framework of the BCS approximation. Thus, in this model, the 0+0^+ spurious states appear, which are caused by the breaking of the symmetry related to the particle-number conservation. In this work, the method is described which solves the problem of the 0+0^+ spurious states in the QTBA with the help of the projection technique. The method is illustrated by calculations of 0+0^+ excitations in 120^{120}Sn nucleus.Comment: 12 pages, 3 figures - To appear in the proceedings of the 59-th International Meeting on Nuclear Spectroscopy and Nuclear Structure, June 15-19, 2009, Cheboksary, Russi

    Π“Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ‹ 1 ΠΈ 3 Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… рСкрутирования ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°

    Get PDF
    Background: Gastric and colon tumors are often associated with eosinophilic infiltration of tumor tissue, the significance of which is still not entirely clear. The recruitment of eosinophils into the tissues can be in part regulated by galectins ― galactose-binding proteins which are expressed by a variety of tissues and are capable of exerting a broad range of effects. Aims: To evaluate the expression of galectin-1 and galectin-3 in tumor tissue, and gal-3 gene mRNA expression in blood eosinophils in patients with gastric and colon cancer with or without tissue eosinophilia. Materials and methods: The study included a total of 107 patients (84 males and 23 females, average age 60,9 6,8) with verified gastric cancer (52 persons) and colon cancer (55 persons), who underwent treatment or were registered at the dispensary at the regional medical institution Tomsk Regional Oncology Center (Tomsk, Russia). The control group consisted of 15 men and 11 women of comparable age. The materials of the research included samples of gastric and colon tumors obtained during surgery, and eosinophilic granulocytes isolated from whole blood by immunomagnetic separation. Galectin-1 and galectin-3 expression in tumor tissue was evaluated by immunohistochemistry. The expression of gal-3 gene mRNA in eosinophils was determined by real-time reverse transcription polymerase chain reaction. Statistical analysis of the results was carried out using the non-parametric Mann-Whitney U test for independent samples with Benjamini-Hochberg procedure for multiple comparisons, and the Chi-square Pearson criterion with Yates correction. Results: In patients with gastric cancer and colon cancer, regardless of the presence of tissue eosinophilia, low expression of galectin-3 in the tumor tissue and high expression of gal-3 gene mRNA in peripheral blood eosinophils were found. Gastric and colon cancer patients with eosinophilic infiltration of tumor tissue were characterized by low expression of galectin-1 within tumor cells (in 64.0% cases, 2 = 4.890, Ρ€ = 0.029; and in 73.9% cases, 2 = 5.981, p = 0.031 respectively). There was a statistically significant connection between the level of galectin-1 expression by tumor cells and the presence of tissue eosinophilia both in gastric ( = 0.307) and colon cancer ( = 0.330). Conclusion: Low expression of galectin 1 and 3 by tumor cells in gastric and colon cancer with tissue eosinophilia indicates the lack of a significant effect of these proteins on the process of recruiting eosinophilic granulocytes into tumor tissue. Increased expression of galectin-3 in blood eosinophils in gastric and colon cancer is not associated with the presence of eosinophilic infiltration of tumor tissue.ОбоснованиС. ΠŸΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° вСсьма часто обнаруТиваСтся ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Π°Ρ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΄ΠΎ сих ΠΏΠΎΡ€ нСясно. Π’ рСгуляции рСкрутирования эозинофилов Π² Ρ‚ΠΊΠ°Π½ΡŒ новообразования ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ участиС Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ‹ ― Π±Π΅Π»ΠΊΠΈ, экспрСссируСмыС ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром свойств. ЦСль исслСдования ― ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² 1 ΠΈ 3 Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ ΠΌ-РНК Π³Π΅Π½Π° Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-3 Π² эозинофилах ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° с Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ эозинофилиСй ΠΈ Π±Π΅Π· Π½Π΅Π΅. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ 107 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (84 ΠΌΡƒΠΆΡ‡ΠΈΠ½Ρ‹ ΠΈ 23 ΠΆΠ΅Π½Ρ‰ΠΈΠ½Ρ‹, срСдний возраст 60,9 6,8 Π»Π΅Ρ‚) с Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Ρ€Π°ΠΊΠ° ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° (52 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…) ΠΈ Ρ€Π°ΠΊΠ° толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° (55 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² ΠžΠ“ΠΠ£Π— Вомский областной онкологичСский диспансСр (Вомск). Π’ Π³Ρ€ΡƒΠΏΠΏΡƒ контроля вошли 15 ΠΌΡƒΠΆΡ‡ΠΈΠ½ ΠΈ 11 ΠΆΠ΅Π½Ρ‰ΠΈΠ½ сопоставимого возраста. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» исслСдования: ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Ρ‹, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· Ρ†Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΎΠ²ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ сСпарации, ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ…ΠΎΠ΄Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. Π­ΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² 1 ΠΈ 3 Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ иммуногистохимии. ИсслСдованиС экспрСссии ΠΌ-РНК Π³Π΅Π½Π° Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-3 Π² ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Π°Ρ… осущСствляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ с использованиСм ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ транскрипции. Для статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² примСняли нСпарамСтричСский U-ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ ΠœΠ°Π½Π½Π°Π£ΠΈΡ‚Π½ΠΈ для нСзависимых Π²Ρ‹Π±ΠΎΡ€ΠΎΠΊ с ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠΎΠΉ Π‘Π΅Π½Π΄ΠΆΠ°ΠΌΠΈΠ½ΠΈΠ₯ΠΎΡ…Π±Π΅Ρ€Π³Π° для мноТСствСнного сравнСния ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Ρ…ΠΈ-ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠŸΠΈΡ€ΡΠΎΠ½Π° с ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠΎΠΉ ЙСйтса. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Ρ€Π°ΠΊΠΎΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ Ρ€Π°ΠΊΠΎΠΌ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° Π²Π½Π΅ зависимости ΠΎΡ‚ наличия Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ эозинофилии установлСна низкая экспрСссия Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-3 Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ, Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии ΠΌ-РНК Π³Π΅Π½Π° Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-3 Π² ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Π°Ρ… пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ. Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π°ΠΊΠΎΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ Ρ€Π°ΠΊΠΎΠΌ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° с Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ эозинофилиСй зарСгистрирована низкая экспрСссия ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-1 (Π² 64,0% случаСв, 2 = 4,890, Ρ€ = 0,029, ΠΈ Π² 73,9% случаСв, 2 = 5,981, p = 0,031 соотвСтствСнно). Показана ассоциация гипоэкспрСссии Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-1 с ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ злокачСствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ( = 0,307) ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° ( = 0,330). Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π”Π΅Ρ„ΠΈΡ†ΠΈΡ‚ экспрСссии Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² 1 ΠΈ 3 Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΠΉΡΡ Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ эозинофилиСй, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± отсутствии Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ влияния Π΄Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π½Π° процСсс рСкрутирования ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π³Π°Π»Π΅ΠΊΡ‚ΠΈΠ½Π°-3 эозинофилами ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ злокачСствСнных опухолях ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ толстого ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° Π½Π΅ зависит ΠΎΡ‚ наличия ΡΠΎΠ·ΠΈΠ½ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ

    Ecological causality of the central serous chorioretinopathy incidence in the Sumy region

    No full text
    Background. Studying anthropoecological factors is required to specify risk factors and predictors of central serous chorioretinopathy (CSCR). Purpose. To analyze a level of atmospheric air pollution by Cr6+ and to assess its influence on the incidence of central serous chorioretinopathy among adult population of the Sumy region. Material and Methods. Data on registration of patients for CSCR treatment (according to ICD-10: Н35.7) from 2005 to 2017 were analyzed. The data were obtained in Statistical Department of Sumy Regional Clinical Hospital. Official information data on air pollution by Cr6+ emission at PJSC Sumy NPO were studied. Results. For the entire period of observation, the CSCR incidence in the Sumy region shows a clear tendency to increase. The correlation analysis confirmed the fact that CSCR is determined by Cr6+ emission in the atmospheric air and showed a direct (correlation coefficient r = 0.85) significant (p = 0.0007) relationship (Fig. 3) between the CSCR incidence rate and the levels of Cr6+ emission in the atmosphere. Conclusion. Cr6+ was found to have an indirect and induced effect on the CSCR incidence in the Sumy region
    corecore