777 research outputs found
Do Instantons and Strings Cluster when the Number of Colors is Large?
We consider the limit of QCD using a toy model in which
instantons exchange color-singlet scalar fields which do not self-interact. Our
main observation is that collective attraction leads the formation of large
clusters containing nonperturbative objects. We further show that this
clustering of instantons is limited due to a non-trivial repulsion inherent in
the ADHM multi-instanton solution. As a result the vacuum is very different
from that at low , notably being more inhomogeneous, in ways which will
affect chiral symmetry breaking of light quarks. We also briefly discuss a
similar phenomenon for color strings in baryons made of medium-mass
(charm-like) quarks.Comment: 10 pages, 1 figure, uses epsf.st
An unusual interplay among disorder, Kondo-effect and spin-glass behavior in the Kondo lattices, CeAuCoSi
We report the results of magnetic measurements for the solid solution
CeAuCoSi. The results reveal that this solid solution is
characterized by a magnetic phase diagram (plot of magnetic transition
temperature versus ) unusual for Kondo lattices. In particular, the
spin-glass freezing induced by disorder is observed only for the compositions
at the weak coupling limit; as one approaches the quantum critical point by a
gradual replacement of Au by Co, this disorder effect is surprisingly
suppressed in favor of long range antiferro-magnetic ordering in contrast to
expectations. This unusual interplay between disorder, spin-glass freezing and
the Kondo-effect calls for further refinement of theories on competition
between magnetism and the Kondo effect.Comment: 4 pages, 3 figure
Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples
INTRODUCTION: Recent advances in high-throughput methodologies in the ‘omics’ and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of complex biological samples. OBJECTIVE: The objective of this research was to evaluate a straightforward to implement LC–MS metabolomics method using a commercially available chromatography column that provides increased throughput. Reducing run time can potentially impact chromatography and therefore the effects of ion mobility spectrometry to expand peak capacity were also evaluated. Additional confidence provided via collision cross section measurements for detected features was also explored. METHODS: A rapid untargeted metabolomics workflow was developed with broad metabolome coverage, combining zwitterionic-phase hydrophilic interaction chromatography (HILIC-Z) with drift tube ion mobility-quadrupole time-of-flight (DTIM-qTOF) mass spectrometry. The analytical performance of our method was explored using extracts from complex biological samples, including a reproducibility study on chicken serum and a simple comparative study on a bacterial metabolome. RESULTS: The method is acronymised RHIMMS for rapid HILIC-Z ion mobility mass spectrometry. We present the RHIMMS workflow starting with data acquisition, followed by data processing and analysis. RHIMMS demonstrates improved chromatographic separation for a selection of metabolites with wide physicochemical properties while maintaining reproducibility at better than 20% over 200 injections at 3.5 min per sample for the selected metabolites, and a mean of 13.9% for the top 50 metabolites by intensity. Additionally, the combination of rapid chromatographic separation with ion mobility allows improved annotation and the ability to distinguish isobaric compounds. CONCLUSION: Our results demonstrate RHIMMS to be a rapid, reproducible, sensitive and high-resolution analytical platform that is highly applicable to the untargeted metabolomics analysis of complex samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11306-022-01871-1
Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics
We, first, analytically work out the long-term, i.e. averaged over one
orbital revolution, perturbations on the orbit of a test particle moving in a
local Fermi frame induced therein by the cosmological tidal effects of the
inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently
attracted attention, among other things, as a possible explanation of the
observed cosmic acceleration without resorting to dark energy. Then, we
phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 =
-\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of
solar system data. The corrections to the standard
Newtonian/Einsteinian precessions of the perihelia of the inner planets
recently estimated with the EPM ephemerides, compared to our predictions for
them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of
the Cassini-based Earth-Saturn range, compared with the numerically integrated
LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced
distortions of the orbit of a typical object of the Oort cloud with respect to
the commonly accepted Newtonian picture, based on the observations of the comet
showers from that remote region of the solar system, point towards K_1/2 <=
10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from
cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference
added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP
К вопросу о языке в его территориальной вариантности (на материале английского языка в Канаде)
The article deals with some lexical peculiarities in Canadian English.В статье предпринята попытка описания некоторых лексических особенностей современного литературного английского языка в Канаде
Anisotropic Superparamagnetism of Monodispersive Cobalt-Platinum Nanocrystals
Based on the high-temperature organometallic route (Sun et al. Science 287,
1989 (2000)), we have synthesized powders containing CoPt_3 single crystals
with mean diameters of 3.3(2) nm and 6.0(2) nm and small log-normal widths
sigma=0.15(1). In the entire temperature range from 5 K to 400 K, the
zero-field cooled susceptibility chi(T) displays significant deviations from
ideal superparamagnetism. Approaching the Curie temperature of 450(10) K, the
deviations arise from the (mean-field) type reduction of the ferromagnetic
moments, while below the blocking temperature T_b, chi(T) is suppressed by the
presence of energy barriers, the distributions of which scale with the particle
volumes obtained from transmission electron microscopy (TEM). This indication
for volume anisotropy is supported by scaling analyses of the shape of the
magnetic absorption chi''(T,omega) which reveal distribution functions for the
barriers being also consistent with the volume distributions observed by TEM.
Above 200 K, the magnetization isotherms M(H,T) display Langevin behavior
providing 2.5(1) mu_B per CoPt_3 in agreement with reports on bulk and thin
film CoPt_3. The non-Langevin shape of the magnetization curves at lower
temperatures is for the first time interpreted as anisotropic
superparamagnetism by taking into account an anisotropy energy of the
nanoparticles E_A(T). Using the magnitude and temperature variation of E_A(T),
the mean energy barriers and 'unphysical' small switching times of the
particles obtained from the analyses of chi''(T,omega) are explained. Below T_b
hysteresis loops appear and are quantitatively described by a blocking model,
which also ignores particle interactions, but takes the size distributions from
TEM and the conventional field dependence of E_A into account.Comment: 12 pages with 10 figures and 1 table. Version accepted for
publication in Phys. Rev. B . Two-column layou
Supernova pointing with low- and high-energy neutrino detectors
A future galactic SN can be located several hours before the optical
explosion through the MeV-neutrino burst, exploiting the directionality of
--scattering in a water Cherenkov detector such as Super-Kamiokande. We
study the statistical efficiency of different methods for extracting the SN
direction and identify a simple approach that is nearly optimal, yet
independent of the exact SN neutrino spectra. We use this method to quantify
the increase in the pointing accuracy by the addition of gadolinium to water,
which tags neutrons from the inverse beta decay background. We also study the
dependence of the pointing accuracy on neutrino mixing scenarios and initial
spectra. We find that in the ``worst case'' scenario the pointing accuracy is
at 95% C.L. in the absence of tagging, which improves to
with a tagging efficiency of 95%. At a megaton detector, this accuracy can be
as good as . A TeV-neutrino burst is also expected to be emitted
contemporaneously with the SN optical explosion, which may locate the SN to
within a few tenths of a degree at a future km high-energy neutrino
telescope. If the SN is not seen in the electromagnetic spectrum, locating it
in the sky through neutrinos is crucial for identifying the Earth matter
effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be
published in Phys. Rev. D. A few points in the original text are clarifie
Magnetic anomalies in nanocrystalline Ca3CoRhO6, a geometrically frustrated spin-chain compound,
We have investigated the magnetic behavior of the nano crystals, synthesized
by high-energy ball-milling, for a well-known geometrically frustrated
spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with
those of the bulk form by measuring ac and dc magnetization. The features
attributable to the onset of 'partially disordered antiferromagnetism'
(characterizing the bulk form) are not seen in the magnetization data of the
nano particles; the magnetic moment at high fields in the very low temperature
range in the magnetically ordered state gets relatively enhanced in the nano
particles. It appears that the ferromagnetic intrachain interaction, judged by
the sign of the paramagnetic Curie temperature, is preserved in the nano
particles. These trends are opposite to those seen in Ca3Co2O6. However, the
complex spin-dynamics as evidenced by large frequency dependence of ac
susceptibility is retained in the nano particles as well. Thus, there are some
similarities and dissimilarities between the properties of the nano particles
and those of the bulk. We believe that these findings would be useful to
understand correlation lengths deciding various properties of geometrical
frustration and/or spin-chain phenomena.Comment: Solid State Communications, in pres
Abelian Monopole and Center Vortex Views at the Multi-Instanton Gas
We consider full non-Abelian, Abelian and center projected lattice field
configurations built up from random instanton gas configurations in the
continuum. We study the instanton contribution to the force with
respect to ({\it i}) instanton density dependence, ({\it ii}) Casimir scaling
and ({\it iii}) whether various versions of Abelian dominance hold. We check
that the dilute gas formulation for the interaction potential gives an reliable
approximation only for densities small compared to the phenomenological value.
We find that Casimir scaling does not hold, confirming earlier statements in
the literature. We show that the lattice used to discretize the instanton gas
configurations has to be sufficiently coarse ( compared
with the instanton size ) such that maximal Abelian gauge
projection and center projection as well as the monopole gas contribution to
the force reproduce the non-Abelian instanton-mediated force in the
intermediate range of linear quasi-confinement. We demonstrate that monopole
clustering also depends critically on the discretization scale confirming
earlier findings based on monopole blocking.Comment: 21 pages, 22 Postscript figure
- …