517 research outputs found

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    Dilatancy transition in a granular model

    Full text link
    We introduce a model of granular matter and use a stress ensemble to analyze shearing. Monte Carlo simulation shows the model to exhibit a second order phase transition, associated with the onset of dilatancy.Comment: Future versions can be obtained from: http://www.ma.utexas.edu/users/radin/papers/shear2.pd

    Singular solutions of fully nonlinear elliptic equations and applications

    Full text link
    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of Rn\mathbb{R}^n, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure

    Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization

    Full text link
    Single crystalline films of bismuth-substituted ferrite garnets have been synthesized by the liquid phase epitaxy method where GGG substrates are dipped into the flux. The growth parameters are controlled to obtain films with in-plane magnetization and virtually no domain activity, which makes them excellently suited for magnetooptic imaging. The Faraday rotation spectra were measured across the visible range of wavelengths. To interprete the spectra we present a simple model based on the existence of two optical transitions of diamagnetic character, one tetrahedral and one octahedral. We find excellent agreement between the model and our experimental results for photon energies between 1.77 and 2.53 eV, corresponding to wavelengths between 700 and 490 nm. It is shown that the Faraday rotation changes significantly with the amount of substituted gallium and bismuth. Furthermore, the experimental results suggest that the magnetooptic response changes linearly with the bismuth substitution.Comment: 15 pages, 6 figures, published in Phys. Rev.

    Magnetic Phase transitions in Plasmas and Transport Barriers

    Full text link
    A model of magnetic phase transitions in plasmas is presented: plasma blobs with pressure excess or defect are dia- or para-magnets and move radially under the influence of the background plasma magnetisation. It is found that magnetic phase separation could be the underlying mechanism of L to H transitions and drive transport barrier formation. Magnetic phase separation and associated pedestal build up, as described here, can be explained by the well known interchange mechanism, now reinterpreted as a magnetisation interchange which remains relevant even when stable or saturated. A testable necessary criterion for the L to H transition is presented.Comment: 3 figures, 9 pages, equations created with MathType To be published in Nuclear Fusion, accepted August 201

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    P2Y1 receptor modulation of endogenous ion channel function in Xenopus oocytes: Involvement of transmembrane domains

    Get PDF
    Agonist activation of the hP2Y1 receptor expressed in Xenopus oocytes stimulated an endogenous voltage-gated ion channel, previously identified as the transient inward (Tin) channel. When human P2Y1 (hP2Y1) and skate P2Y (sP2Y) receptors were expressed in Xenopus oocytes, time-to-peak values (a measure of the response to membrane hyperpolarization) of the Tin channel were significantly reduced compared to oocytes expressing the hB1-bradykinin receptor or the rat M1-muscarinic (rM1) receptor. Differences in activation were also observed in the Tin currents elicited by various P2Y receptor subtypes. The time-to-peak values of the Tin channel in oocytes expressing the hP2Y4, hP2Y11, or hB1-bradykinin receptors were similar, whereas the channel had significantly shorter time-to-peak values in oocytes expressing either the hP2Y1 or sP2Y receptor. Amino acid substitutions at His-132, located in the third transmembrane domain (TM3) of the hP2Y1 receptor, delayed the onset of channel opening, but not the kinetics of the activation process. In addition, Zn2+ sensitivity was also dependent on the subtype of P2Y receptor expressed. Replacement of His-132 in the hP2Y1 receptor with either Ala or Phe increased Zn2+ sensitivity of the Tin current. In contrast, truncation of the C-terminal region of the hP2Y1 receptor had no affect on activation or Zn2+ sensitivity of the Tin channel. These results suggested that TM3 in the hP2Y1 receptor was involved in modulating ion channel function and blocker pharmacology of the Tin channel
    corecore