12 research outputs found

    High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    No full text
    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the DT neutron spectrum from cryogenically layered Inertial Confinement Fusion (ICF) implosions. Yield, areal density, apparent ion temperature and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM

    Indications of flow near maximum compression in layered DT implosions at the National Ignition Facility

    No full text
    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium and tritium (DT) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility (NIF). We present measurements of neutrons from such implosions. The apparent ion temperatures (Tion) are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD Tions are observed, and the difference is seen to increase with increasing apparent DT Tion. The line-of-sight r.m.s. variations of both DD and DT Tion are small, ~150 eV, indicating an isotropic source. DD neutron yields are consistently high relative to the DT neutron yields given the observed Tions. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to DT Tion > DD Tion, but are in a 1D model insufficient to explain the data. We hypothesize that in a 3D interpretation, these effects combined could explain the results

    Development of an inertial confinement fusion platform to study charged particle-producing nuclear reactions relevant to nuclear astrophysics

    No full text
    This paper describes the development of a platform to study astrophysically relevant nuclear reactions using inertial-confinement fusion implosions on the OMEGA and NIF laser facilities, with a particular focus on optimizing the implosions to study charged-particle-producing reactions. Primary requirements on the platform are high yield, for high statistics in the fusion product measurements, combined with low areal density, to allow the charged fusion products to escape. This is optimally achieved with direct-drive exploding pusher implosions using thin-glass-shell capsules. Mitigation strategies to eliminate a possible target sheath potential which would accelerate the emitted ions are discussed. The potential impact of kinetic effects on the implosions is also considered. The platform is initially employed to study the complementary T(t,2n)??, T(3He,np)?? and 3He(3He,2p)?? reactions. Proof-of-principle results from the first experiments demonstrating the ability to accurately measure the energy and yields of charged particles are presented. Lessons learned from these experiments will be used in studies of other reactions. The goals are to explore thermonuclear reaction rates and fundamental nuclear physics in stellar-like plasma environments, and to push this new frontier of nuclear astrophysics into unique regimes not reachable through existing platforms, with thermal ion velocity distributions, plasma screening and low reactant energies
    corecore