312 research outputs found

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p≤2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Inequalities for quantum skew information

    Full text link
    We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations. Key words and phrases: Quantum covariance, metric adjusted skew information, Robertson-type uncertainty principle, operator monotone function, Wigner-Yanase-Dyson skew information

    Larmor precession and tunneling time of a relativistic neutral spinning particle through an arbitrary potential barrier

    Get PDF
    The Larmor precession of a relativistic neutral spin-1/2 particle in a uniform constant magnetic field confined to the region of a one-dimensional arbitrary potential barrier is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of general spin coherent state it is explicitly shown that the precession time is equal to the dwell time.Comment: 10 pages, 1 figure. To be published in Phys. Rev. A (01 February 2002

    Simulating Poynting Flux Acceleration in the Laboratory with Colliding Laser Pulses

    Get PDF
    We review recent PIC simulation results which show that double-sided irradiation of a thin over-dense plasma slab with ultra-intense laser pulses from both sides can lead to sustained comoving Poynting flux acceleration of electrons to energies much higher than the conventional ponderomotive limit. The result is a robust power-law electron momentum spectrum similar to astrophysical sources. We discuss future ultra-intense laser experiments that may be used to simulate astrophysical particle acceleration.Comment: Paper accepted for publication in the Astrophysics and Space Science, Volume for HEDLA06 conference proceedings, edited by G. Kyrala, in pres

    Angular momenta creation in relativistic electron-positron plasma

    Get PDF
    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrodinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.Comment: 20 pages, 6 figure

    Singularity free dilaton-driven cosmologies and pre-little-bang

    Get PDF
    There are no reasons why the singularity in the growth of the dilaton coupling should not be regularised, in a string cosmological context, by the presence of classical inhomogeneities. We discuss a class of inhomogeneous dilaton-driven models whose curvature invariants are all bounded and regular in time and space. We prove that the non-space-like geodesics of these models are all complete in the sense that none of them reaches infinity for a finite value of the affine parameter. We conclude that our examples represent truly singularity-free solutions of the low energy beta functions. We discuss some symmetries of the obtained solutions and we clarify their physical interpretation. We also give examples of solutions with spherical symmetry. In our scenario each physical quantity is everywhere defined in time and space, the big-bang singularity is replaced by a maximal curvature phase where the dilaton kinetic energy reaches its maximum. The maximal curvature is always smaller than one (in string units) and the coupling constant is also smaller than one and it grows between two regimes of constant dilaton, implying, together with the symmetries of the solutions, that higher genus and higher curvature corrections are negligible. We argue that our examples describe, in a string cosmological context, the occurrence of ``little bangs''(i.e. high curvature phases which never develop physical singularities). They also suggest the possibility of an unexplored ``pre-little-bang'' phase.Comment: 25 pages in LaTex style, 3 encapsulated figure

    BigDL: A Distributed Deep Learning Framework for Big Data

    Full text link
    This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms. It allows deep learning applications to run on the Apache Hadoop/Spark cluster so as to directly process the production data, and as a part of the end-to-end data analysis pipeline for deployment and management. Unlike existing deep learning frameworks, BigDL implements distributed, data parallel training directly on top of the functional compute model (with copy-on-write and coarse-grained operations) of Spark. We also share real-world experience and "war stories" of users that have adopted BigDL to address their challenges(i.e., how to easily build end-to-end data analysis and deep learning pipelines for their production data).Comment: In ACM Symposium of Cloud Computing conference (SoCC) 201

    Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks

    Get PDF
    Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.Comment: 13 pages, no figures. Invited review, accepted for publication in Astrophysics and Space Science, as part of the HEDLA 2006 conference proceeding
    • …
    corecore