825 research outputs found
Dimensional effects in photoelectron spectra of Ag deposits on GaAs(110) surfaces
It is shown that the peak structure observed in angle-resolved photoelectron
spectra of metallic deposits can only be unambiguously associated to single
electronic states if the deposit has a two dimensional character (finite along
one spatial direction). In one and zero dimensions the density of states shows
peaks related to bunches of single electron states (the finer structure
associated to the latter may not always be experimentally resolved). The
characteristics of the peak structure strongly depend on the band dispersion in
the energy region where they appear. Results for the density of states and
photoemission yield for Ag crystallites on GaAs(110) are presented and compared
with experimental photoelectron spectra.Comment: Uuencoded gz-compressed postcript file including text and three
figures; Send comments to [email protected]
An adaptive finite element method for the infinity Laplacian
We construct a finite element method (FEM) for the infinity Laplacian. Solutions of this problem are well known to be singular in nature so we have taken the opportunity to conduct an a posteriori analysis of the method deriving residual based estimators to drive an adaptive algorithm. It is numerically shown that optimal convergence rates are regained using the adaptive procedure
Co-existence of organising pneumonia in a patient with Mycobacterium Avium Intracellulare pulmonary infection
Non-tuberculous mycobacterias (NTMs) have many clinical manifestations in humans, depending on the underlying immunological status. We present a patient with Mycobacterium avium intracellulare pulmonary infection and co-existing, biopsy proven non-granulomatous organising pneumonia in distinct regions within the lungs. Treatment consisting of anti-mycobacterial therapy and corticosteroids led to clinico-radiological resolution. This case represents a potential broader clinico-pathological manifestation of Mycobacterium avium intracellulare
Homogenization and enhancement for the G-equation
We consider the so-called G-equation, a level set Hamilton-Jacobi equation,
used as a sharp interface model for flame propagation, perturbed by an
oscillatory advection in a spatio-temporal periodic environment. Assuming that
the advection has suitably small spatial divergence, we prove that, as the size
of the oscillations diminishes, the solutions homogenize (average out) and
converge to the solution of an effective anisotropic first-order
(spatio-temporal homogeneous) level set equation. Moreover we obtain a rate of
convergence and show that, under certain conditions, the averaging enhances the
velocity of the underlying front. We also prove that, at scale one, the level
sets of the solutions of the oscillatory problem converge, at long times, to
the Wulff shape associated with the effective Hamiltonian. Finally we also
consider advection depending on position at the integral scale
Line Graphs of Weighted Networks for Overlapping Communities
In this paper, we develop the idea to partition the edges of a weighted graph
in order to uncover overlapping communities of its nodes. Our approach is based
on the construction of different types of weighted line graphs, i.e. graphs
whose nodes are the links of the original graph, that encapsulate differently
the relations between the edges. Weighted line graphs are argued to provide an
alternative, valuable representation of the system's topology, and are shown to
have important applications in community detection, as the usual node partition
of a line graph naturally leads to an edge partition of the original graph.
This identification allows us to use traditional partitioning methods in order
to address the long-standing problem of the detection of overlapping
communities. We apply it to the analysis of different social and geographical
networks.Comment: 8 Pages. New title and text revisions to emphasise differences from
earlier paper
Stationary Cylindrical Anisotropic Fluid
We present the whole set of equations with regularity and matching conditions
required for the description of physically meaningful stationary cylindrically
symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime.
A specific example is given. The electric and magnetic parts of the Weyl tensor
are calculated, and it is shown that purely electric solutions are necessarily
static. Then, it is shown that no conformally flat stationary cylindrical fluid
exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra
Robust exponential decay of correlations for singular-flows
We construct open sets of Ck (k bigger or equal to 2) vector fields with
singularities that have robust exponential decay of correlations with respect
to the unique physical measure. In particular we prove that the geometric
Lorenz attractor has exponential decay of correlations with respect to the
unique physical measure.Comment: Final version accepted for publication with added corrections (not in
official published version) after O. Butterley pointed out to the authors
that the last estimate in the argument in Subsection 4.2.3 of the previous
version is not enough to guarantee the uniform non-integrability condition
claimed. We have modified the argument and present it here in the same
Subsection. 3 figures, 34 page
Statefinder diagnosis and the interacting ghost model of dark energy
A new model of dark energy namely "ghost dark energy model" has recently been
suggested to interpret the positive acceleration of cosmic expansion. The
energy density of ghost dark energy is proportional to the hubble parameter. In
this paper we perform the statefinder diagnostic tool for this model both in
flat and non-flat universe. We discuss the dependency of the evolutionary
trajectories in and planes on the interaction parameter between
dark matter and dark energy as well as the spatial curvature parameter of the
universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we
plot the evolutionary trajectories in and planes for the best fit
values of the cosmological parameters and compare the interacting ghost model
with other dynamical dark energy models. We show that the evolutionary
trajectory of ghost dark energy in statefinder diagram is similar to
holographic dark energy model. It has been shown that the statefinder location
of CDM is in good agreement with observation and therefore the dark
energy models whose current statefinder values are far from the CDM
point can be ruled out.Comment: 23 pages, 6 figure
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
- …