979 research outputs found

    Application of Fuzzy Cognitive Mapping in Livelihood Vulnerability Analysis

    Get PDF
    Feedback mechanisms are important in the analysis of vulnerability and resilience of social-ecological systems, as well as in the analysis of livelihoods, but how to evaluate systems with direct feedbacks has been a great challenge. We applied fuzzy cognitive mapping, a tool that allows analysis of both direct and indirect feedbacks and can be used to explore the vulnerabilities of livelihoods to identified hazards. We studied characteristics and drivers of rural livelihoods in the Great Limpopo Transfrontier Conservation Area in southern Africa to assess the vulnerability of inhabitants to the different hazards they face. The process involved four steps: (1) surveys and interviews to identify the major livelihood types; (2) description of specific livelihood types in a system format using fuzzy cognitive maps (FCMs), a semi-quantitative tool that models systems based on people’s knowledge; (3) linking variables and drivers in FCMs by attaching weights; and (4) defining and applying scenarios to visualize the effects of drought and changing park boundaries on cash and household food security. FCMs successfully gave information concerning the nature (increase or decrease) and magnitude by which a livelihood system changed under different scenarios. However, they did not explain the recovery path in relation to time and pattern (e.g., how long it takes for cattle to return to desired numbers after a drought). Using FCMs revealed that issues of policy, such as changing situations at borders, can strongly aggravate effects of climate change such as drought. FCMs revealed hidden knowledge and gave insights that improved the understanding of the complexity of livelihood systems in a way that is better appreciated by stakeholders

    A cross-sectional study to determine the seroprevalence of bluetongue virus serotype 8 in sheep and goats in 2006 and 2007 in the Netherlands

    Get PDF
    Background: In August 2006 a major epidemic of bluetongue virus serotype 8 (BTV8) started off in North-West Europe. In the course of 2007 it became evident that BTV8 had survived the winter in North-West Europe, re-emerged and spread exponentially. Recently, the European Union decided to start vaccination against BTV8. In order to improve the understanding of the epidemiological situation, it was necessary to execute a cross-sectional serological study at the end of the BT vector season. Cattle were the target species for cross-sectional serological studies in Europe at the end of 2006 and 2007. However, there was no information on the BTV8- seroprevalence in sheep and goats. Results: On the basis of our cross-sectional study, the estimated seroprevalence of BTV8-exposed locations in the Netherlands in 2006 was 0% for goats (95% confidence interval: 0 ¿ 5.6%) and 7.0% for sheep (95% confidence interval: 3.5 ¿ 12.9%). The estimated seroprevalence of BTV-8 exposed locations in 2007 was 47% for goats (95% confidence interval: 36 ¿ 58%) and 70% for sheep (95% confidence interval: 63 ¿ 76%). There was a wide range in within-location seroprevalence in locations with goats and sheep (1 ¿ 100%). A gradient in seroprevalence was seen, with the highest level of seroprevalence in the southern Netherlands, the area where the epidemic started in 2006, and a decreasing seroprevalence when going in a northern direction. Conclusion: There is a much higher estimated seroprevalence of locations with goats exposed to BTV8 than can be inferred from the rather low number of reported clinical outbreaks in goats. This is probably due to the fact that clinical signs in infected goats are far less obvious than in sheep. The wide range in within-location seroprevalence observed means that the proportion of animals protected in 2008 by a natural infection in 2006 and/or 2007 can differ highly between flocks. This should be taken into account when vaccinating animals

    A new Mulch Rake for increased efficiency

    Get PDF

    Capturing aerosol droplet nucleation and condensation bursts using PISO and TVD schemes

    Get PDF
    A mathematical model for single-species aerosol production and transport is formulated, and solved using an adapted PISO algorithm. The model is applied to a laminar flow diffusion chamber, using a finite volume method on a collocated grid. In tran- sient simulations, a sharp scalar front (e.g., vapor mass fraction), is shown to introduce unphysical oscillation in the solution, when applying a second order linear interpolation in the convective terms. At increased grid resolution, these oscillations are strongly at- tenuated. When applying a TVD scheme (here the MUSCL scheme), a time-accurate monotonicity-preserving solution is obtained. The numerical dissipation introduced by the MUSCL scheme implies increased spatial resolution to restore high accuracy levels. We develop a one-dimensional grid refinement algorithm, which relates the grid density in one direction to the magnitude of the scalar gradient. In combination with the MUSCL scheme, this gives accurate results, with a significant reduction in computational effort, in comparison with a uniform fine grid

    Wireless D&F relay channels: time allocation strategies for cooperation and optimum operation

    Get PDF
    Transmission over the wireless medium is a challenge compared to its wired counterpart. Scarcity of spectrum, rapid degradation of signal power over distance, interference from neighboring nodes and random behavior of the channel are some of the difficulties with which a wireless system designer has to deal. Moreover, emerging wireless networks assume mobile users with limited or no infrastructure. Since its early application, relaying offered a practical solution to some of these challenges. Recently, interest on the relay channel is revived by the work on user-cooperative communications. Latest studies aim to re-employ the channel to serve modern wireless networks. In this work, the decode-and-forward (D&F) relay channel with half-duplex constraint on the relay is studied. Focus is on producing analytical results for the half-duplex D&F relay channel with more attention given to time allocation. First, an expression for the mutual information for the channel with arbitrary time allocation is developed. Introduction of the concept of conversion point explains some of the channel behavior and help in classifying the channel into suppressed and unsuppressed types. In the case of Rayleigh fading, cumulative distribution function (cdf) and probability density function (pdf) are evaluated for the mutual information. Consequently, expressions for average mutual information and outage probability are obtained. Optimal operation of the channel is investigated. Optimal time allocation for maximum mutual information and optimal time allocation for minimum total transmission time are worked out for the case of channel state information at transmitter (CSIT). Results revealed important duality between optimization problems. Results obtained are extended from a two-hop channel to any number of hops. Only sequential transmission is considered. A cooperative scheme is also developed based on the three-node relay channel. A two-user network is used as a prototype for a multi-user cooperative system. Based on the model assumed, an algorithm for partner selection is developed. Simulation results showed advantages of cooperation for individual users as well as the overall performance of the network
    corecore