12 research outputs found

    Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes

    Get PDF
    Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours

    Emergence of a Complex Relationship between HIV-1 and the microRNA Pathway

    No full text
    Recent experimental evidences support the existence of an increasingly complex and multifaceted interaction between viruses and the microRNA-guided RNA silencing machinery of human cells. The discovery of small interfering RNAs (siRNAs), which are designed to mediate cleavage of specific messenger RNAs (mRNAs), prompted virologists to establish therapeutic strategies based on siRNAs with the aim to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). It has been appreciated only recently that viral RNAs can also be processed endogenously by the microRNA-generating enzyme Dicer or recognized by cellular miRNAs, in processes that could be viewed as an adapted antiviral defense mechanism. Known to repress mRNA translation through recognition of specific binding sites usually located in their 3′ untranslated region, miRNAs of host or viral origin may exert regulatory effects towards host and/or viral genes and influence viral replication and/or the host response to viral infection. This article summarizes our current state of knowledge on the relationship between HIV-1 and miRNA-guided RNA silencing, and discusses the different aspects of their interaction
    corecore