27 research outputs found
Role of Umklapp Processes in Conductivity of Doped Two-Leg Ladders
Recent conductivity measurements performed on the hole-doped two-leg ladder
material reveal an approximately linear
power law regime in the c-axis DC resistivity as a function of temperature for
. In this work, we employ a bosonic model to argue that umklapp processes
are responsible for this feature and for the high spectral weight in the
optical conductivity which occurs beyond the finite frequency Drude-like peak.
Including quenched disorder in our model allows us to reproduce experimental
conductivity and resistivity curves over a wide range of energies. We also
point out the differences between the effect of umklapp processes in a single
chain and in the two-leg ladder.Comment: 10 pages, 2 figure
Charge-density wave formation in Sr_{14}Cu_{24}O_{41}
The electrodynamic response of the spin-ladder compound
SrCaCuO () has been studied from
radiofrequencies up to the infrared. At temperatures below 250 K a pronounced
absorption peak appears around 12 cm in SrCuO for
the radiation polarized along the chains/ladders ().
In addition a strongly temperature dependent dielectric relaxation is observed
in the kHz - MHz range. We explain this behavior by a charge density wave which
develops in the ladders sub-system and produces a mode pinned at 12 cm.
With increasing Ca doping the mode shifts up in frequency and eventually
disappears for because the dimensionality of the system crosses over from
one to two dimensions, giving way to the superconducting ground state under
pressure.Comment: One name added to author list 4 pages, 2 figures, email:
[email protected]
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
Sliding conduction by the quasi one-dimensional charge-ordered state in SrCaCuO
Nonlinear conduction (NLC) of the two-leg spin ladder,
SrCaCuO, was investigated for the =0, 1 and 12
materials . Although insulating materials (=0 and 1) exibited the NLC both
in the ladder- and rung directions, the NLC in the ladder direction of the
=0-material was found to be very special. We considered this to be due to
the sliding motion of the charge ordered state, which was responsible for the
resonance at microwave frequencies. We discussed possible candidates for the
charge ordered state responsible for the NLC, including Wigner crystal in quasi
one dimension (4-CDW).Comment: 5 figure
Recommended from our members
COMPOSITION AND STAGING IN THE GRAPHITE/AsF6 SYSTEM AND ITS RELATIONSHIP TO GRAPHITE/AsF5
Recommended from our members