20 research outputs found

    Density Perturbations in the Brans-Dicke Theory

    Get PDF
    We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.Comment: 26 pages, latex fil

    Long wavelength iteration of Einstein's equations near a spacetime singularity

    Get PDF
    We clarify the links between a recently developped long wavelength iteration scheme of Einstein's equations, the Belinski Khalatnikov Lifchitz (BKL) general solution near a singularity and the antinewtonian scheme of Tomita's. We determine the regimes when the long wavelength or antinewtonian scheme is directly applicable and show how it can otherwise be implemented to yield the BKL oscillatory approach to a spacetime singularity. When directly applicable we obtain the generic solution of the scheme at first iteration (third order in the gradients) for matter a perfect fluid. Specializing to spherical symmetry for simplicity and to clarify gauge issues, we then show how the metric behaves near a singularity when gradient effects are taken into account.Comment: 35 pages, revtex, no figure

    Thermal correction to the Casimir force, radiative heat transfer, and an experiment

    Full text link
    The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.

    Towards a Nonequilibrium Quantum Field Theory Approach to Electroweak Baryogenesis

    Get PDF
    We propose a general method to compute CPCP-violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CPCP-violation and its suppression coming from the incoherent nature of thermal processes are also made explicit.Comment: 19 pages, 1 figure available upon e-mail reques

    Abelian gauge potentials on cubic lattices

    Full text link
    The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to implement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM series 201

    Mekanika klasik

    No full text
    Judul asli : Klasische mechanikxii, 320 p. : il.; 21 cm

    Mekanika klasik

    No full text
    Judul asli : Klasische mechanikxii, 320 p. : il.; 21 cm
    corecore