25 research outputs found

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Observations and modeling of steep-beach grain-size variability

    No full text
    Novel observations of surface grain-size distributions are used in combination with intra-wave modeling to examine the processes responsible for the sorting of sediment grains on a relatively steep beach (slope?=?1:7.5). The field observations of the mean grain size collected with a digital camera system at consecutive low and high tides for a 2 week period show significant temporal and spatial variation. This variation is reproduced by the modeling approach when the surf zone flow-circulation is relatively weak, showing coarse grain sizes at the location of the shore break and finer sediment onshore and offshore of the shore break. The model results suggest that grain size sorting is dominated by the wave-breaking-related suspended sediment transport which removes finer sediment from the shore break and transports it both on-shore and offshore. The transport capacity of wave-breaking-related suspended sediment is controlled by the sediment response time scale in the advection-diffusion equation, where small (large) values promote onshore (offshore) transport. Comparisons with the observed beach profile evolution suggest a relatively short time scale for the suspended sediment response which could be explained by the vigorous breaking of the waves at the shore break.Hydraulic EngineeringCivil Engineering and Geoscience

    Ultrathin Piezoelectric Resonators Based on Graphene and Free-Standing Single-Crystal BaTiO<sub>3</sub>

    No full text
    Suspended piezoelectric thin films are key elements enabling high-frequency filtering in telecommunication devices. To meet the requirements of next-generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high-quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free-standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q-factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next-generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.QN/Steeneken LabImPhys/OpleidingTechnische NatuurkundeQN/van der Zant LabQN/Steele LabQN/Groeblacher LabQN/Caviglia LabDynamics of Micro and Nano SystemsQRD/Wimmer La
    corecore