3 research outputs found

    Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses

    Full text link
    We propose a unified explanation for the origin of dark matter and baryon number asymmetry on the basis of a non-supersymmetric model for neutrino masses. Neutrino masses are generated in two distinct ways, that is, a tree-level seesaw mechanism with a single right-handed neutrino, and one-loop radiative effects by a new additional doublet scalar. A spontaneously broken U(1)′^\prime brings a Z2Z_2 symmetry which restricts couplings of this new scalar and controls the neutrino masses. It also guarantees the stability of a CDM candidate. We examine two possible candidate for the CDM. We also show that the decay of a heavy right-handed neutrino related to the seesaw mechanism can generate baryon number asymmetry through leptogenesis.Comment: 21 pages, 3 figures, extended version for publication, references adde

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases
    corecore