383 research outputs found
Topographically Scattered Infrasound Waves Observed on Microbarometer Arrays in the Lower Stratosphere
When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth
Monitoring changes in human activity during the COVID-19 shutdown in Las Vegas using infrasound microbarometers
While studies of urban acoustics are typically restricted to the audio range, anthropogenic activity also generates infrasound (<20 Hz, roughly at the lower end of the range of human hearing). Shutdowns related to the COVID-19 pandemic unintentionally created ideal conditions for the study of urban infrasound and low frequency audio (20-500 Hz), as closures reduced human-generated ambient noise, while natural signals remained relatively unaffected. An array of infrasound sensors deployed in Las Vegas, NV, provides data for a case study in monitoring human activity during the pandemic through urban acoustics. The array records a sharp decline in acoustic power following the temporary shutdown of businesses deemed nonessential by the state of Nevada. This decline varies spatially across the array, with stations close to McCarran International Airport generally recording the greatest declines in acoustic power. Further, declines in acoustic power fluctuate with the time of day. As only signals associated with anthropogenic activity are expected to decline, this gives a rough indication of periodicities in urban acoustics throughout Las Vegas. The results of this study reflect the city's response to the pandemic and suggest spatiotemporal trends in acoustics outside of shutdowns
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
A Likelihood Method for Measuring the Ultrahigh Energy Cosmic Ray Composition
Air fluorescence detectors traditionally determine the dominant chemical
composit ion of the ultrahigh energy cosmic ray flux by comparing the averaged
slant depth of the shower maximum, , as a function of energy to the
slant depths expect ed for various hypothesized primaries. In this paper, we
present a method to make a direct measurement of the expected mean number of
protons and iron by comparing the shap es of the expected
distributions to the distribution for data. The advantages of this method
includes the use of information of the full distribution and its ability to
calculate a flux for various cosmic ray compositi ons. The same method can be
expanded to marginalize uncertainties due to choice of spectra, hadronic models
and atmospheric parameters. We demonstrate the technique with independent
simulated data samples from a parent sample of protons and iron. We accurately
predict the number of protons and iron in the parent sample and show that the
uncertainties are meaningful.Comment: 11 figures, 22 pages, accepted by Astroparticle Physic
A Quantum-mechanical Approach for Constrained Macromolecular Chains
Many approaches to three-dimensional constrained macromolecular chains at
thermal equilibrium, at about room temperatures, are based upon constrained
Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa)
have also been treated by different researchers for decades. QMa address a
fundamental issue (constraints versus the uncertainty principle) and are
versatile: they also yield classical descriptions (which may not coincide with
those from cCHDa, although they may agree for certain relevant quantities).
Open issues include whether QMa have enough practical consequences which differ
from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal
with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special
Topics) Vol. 200, pp. 225-258 (2011
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …