475 research outputs found

    Instabilities in the Flux Line Lattice of Anisotropic Superconductors

    Full text link
    The stability of the flux line lattice has been investigated within anisotropic London theory. This is the first full-scale investigation of instabilities in the `chain' state. It has been found that the lattice is stable at large fields, but that instabilities occur as the field is reduced. The field at which these instabilities first arise, b∗(ϵ,θ)b^*(\epsilon,\theta), depends on the anisotropy ϵ\epsilon and the angle θ\theta at which the lattice is tilted away from the cc-axis. These instabilities initially occur at wavevector k∗(ϵ,θ)k^*(\epsilon,\theta), and the component of k∗k^* along the average direction of the flux lines, kzk_z, is always finite. As the instability occurs at finite kzk_z the dependence of the cutoff on kzk_z is important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The instabilities only occur for values of the anisotropy ϵ\epsilon appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The lower critical field Hc1(ϕ)H_{c_1}(\phi) is calculated as a function of the angle ϕ\phi at which the applied field is tilted away from the crystal axis. The presence of kinks in Hc1(ϕ)H_{c_1}(\phi) is seen to be related to instabilities in the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic instabilities. Calculation of the lower critical field is included, and the presence of kinks in Hc1H_{c_1} is seen to be related to the elastic instabilities. 29 pages including 16 figures, LaTeX with epsf styl

    Geometric effects on T-breaking in p+ip and d+id superconductors

    Full text link
    Superconducting order parameters that change phase around the Fermi surface modify Josephson tunneling behavior, as in the phase-sensitive measurements that confirmed dd order in the cuprates. This paper studies Josephson coupling when the individual grains break time-reversal symmetry; the specific cases considered are p±ipp \pm ip and d±idd \pm id, which may appear in Sr2_2RuO4_4 and Nax_xCoO2⋅_2 \cdot (H2_2O)y_y respectively. TT-breaking order parameters lead to frustrating phases when not all grains have the same sign of time-reversal symmetry breaking, and the effects of these frustrating phases depend sensitively on geometry for 2D arrays of coupled grains. These systems can show perfect superconducting order with or without macroscopic TT-breaking. The honeycomb lattice of superconducting grains has a superconducting phase with no spontaneous breaking of TT but instead power-law correlations. The superconducting transition in this case is driven by binding of fractional vortices, and the zero-temperature criticality realizes a generalization of Baxter's three-color model.Comment: 8 page

    Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states

    Full text link
    The inter-Landau-level spin excitations of quantum Hall states at filling factors nu=2 and 4/3 are investigated by exact numerical diagonalization for the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings are comparable. The relevant quasiparticles and their interactions are studied, including stable spin wave and skyrmion bound states. For nu=2, a spin instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field approximation. However, for nu=4/3 a new and unexpected quantum phase transition is found which involves a gradual change from paramagnetic to ferromagnetic occupancy of the partially filled Landau level as epsilon is decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let

    Invariant structure of the hierarchy theory of fractional quantum Hall states with spin

    Full text link
    We describe the invariant structure common to abelian fractional quantum Hall systems with spin. It appears in a generalization of the lattice description of the polarized hierarchy that encompasses both partially polarized and unpolarized ground state systems. We formulate, using the spin-charge decomposition, conditions that should be satisfied so that the description is SU(2) invariant. In the case of the spin- singlet hierarchy construction, we find that there are as many SU(2) symmetries as there are levels in the construction. We show the existence of a spin and charge lattice for the systems with spin. The ``gluing'' of the charge and spin degrees of freedom in their bulk is described by the gluing theory of lattices.Comment: 21 pages, LaTex, Submitted to Phys. Rev.

    Separation of spin and charge in paired spin-singlet quantum Hall states

    Get PDF
    We propose a series of paired spin-singlet quantum Hall states, which exhibit a separation of spin and charge degrees of freedom. The fundamental excitations over these states, which have filling fraction \nu=2/(2m+1) with m an odd integer, are spinons (spin-1/2 and charge zero) or fractional holons (charge +/- 1/(2m+1) and spin zero). The braid statistics of these excitations are non-abelian. The mechanism for the separation of spin and charge in these states is topological: spin and charge excitations are liberated by binding to a vortex in a p-wave pairing condensate. We briefly discuss related, abelian spin-singlet states and possible transitions.Comment: 4 pages, uses revtex

    Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

    Full text link
    Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at ν=n/(2pn±1)\nu=n/(2pn\pm 1) corresponds to filled composite-fermion Landau levels,and the compressible state at ν=1/2p\nu=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure

    Compound retention in care and all-cause mortality among persons living with human immunodeficiency virus

    Get PDF
    Background: To obtain optimal health outcomes, persons living with human immunodeficiency virus (HIV) must be retained in clinical care. We examined the relationships between 4 possible combinations of 2 separate retention measures (missed visits and the Institute of Medicine [IOM] indicator) and all-cause mortality. Methods: The sample included 4162 antiretroviral therapy (ART)–naive patients who started ART between January 2000 and July 2010 at any of 5 US sites of the Center for AIDS Research Network of Integrated Clinical Systems. The independent variable of interest was retention, captured over the 12-month period after the initiation of ART. The study outcome, all-cause mortality 1 year after ART initiation, was determined by querying the Social Security Death Index or the National Death Index. We evaluated the associations of the 4 categories of retention with all-cause mortality, using the Cox proportional hazards models. Results: Ten percent of patients did not meet retention standards for either measure (hazard ratio [HR], 2.26; 95% confidence interval [CI], 1.59–3.21). Patients retained by the IOM but not the missed-visits measure (42%) had a higher HR for mortality (1.72; 95% CI, 1.33–2.21) than patients retained by both measures (41%). Patients retained by the missed-visits but not the IOM measure (6%) had the same mortality hazards as patients retained by both measures (HR, 1.01; 95% CI, .54–1.87). Conclusions: Missed visits within the first 12 months of ART initiation are a major risk factor for subsequent death. Incorporating missed visits in clinical and public health retention and viral suppression programming is advised

    Higgs Bundles, Gauge Theories and Quantum Groups

    Get PDF
    The appearance of the Bethe Ansatz equation for the Nonlinear Schr\"{o}dinger equation in the equivariant integration over the moduli space of Higgs bundles is revisited. We argue that the wave functions of the corresponding two-dimensional topological U(N) gauge theory reproduce quantum wave functions of the Nonlinear Schr\"{o}dinger equation in the NN-particle sector. This implies the full equivalence between the above gauge theory and the NN-particle sub-sector of the quantum theory of Nonlinear Schr\"{o}dinger equation. This also implies the explicit correspondence between the gauge theory and the representation theory of degenerate double affine Hecke algebra. We propose similar construction based on the G/GG/G gauged WZW model leading to the representation theory of the double affine Hecke algebra. The relation with the Nahm transform and the geometric Langlands correspondence is briefly discussed.Comment: 48 pages, typos corrected, one reference adde

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.
    • …
    corecore