321 research outputs found

    Properties of the Ideal Ginzburg-Landau Vortex Lattice

    Full text link
    The magnetization curves M(H) for ideal type-II superconductors and the maximum, minimum, and saddle point magnetic fields of the vortex lattice are calculated from Ginzburg-Landau theory for the entire ranges of applied magnetic fields Hc1 <= H < Hc2 or inductions 0 <= B < Hc2 and Ginzburg-Landau parameters sqrt(1/2) <= kappa <= 1000. Results for the triangular and square flux-line lattices are compared with the results of the circular cell approximation. The exact magnetic field B(x,y) and magnetization M(H, kappa) are compared with often used approximate expressions, some of which deviate considerably or have limited validity. Useful limiting expressions and analytical interpolation formulas are presented.Comment: 11 pages, 8 figure

    Buckling instability in type-II superconductors with strong pinning

    Full text link
    We predict a novel buckling instability in the critical state of thin type-II superconductors with strong pinning. This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series of flux jumps visible in the magnetization curve. As an illustration we apply the obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let

    History effects and pinning regimes in solid vortex matter

    Full text link
    We propose a phenomenological model that accounts for the history effects observed in ac susceptibility measurements in YBa2Cu3O7 single crystals [Phys. Rev. Lett. 84, 4200 (2000) and Phys. Rev. Lett. 86, 504 (2001)]. Central to the model is the assumption that the penetrating ac magnetic field modifies the vortex lattice mobility, trapping different robust dynamical states in different regions of the sample. We discuss in detail on the response of the superconductor to an ac magnetic field when the vortex lattice mobility is not uniform inside the sample. We begin with an analytical description for a simple geometry (slab) and then we perform numerical calculations for a strip in a transverse magnetic field which include relaxation effects. In calculations, the vortex system is assumed to coexist in different pinning regimes. The vortex behavior in the regions where the induced current density j has been always below a given threshold (j_c^>) is described by an elastic Campbell-like regime (or a critical state regime with local high critical current density, j_c^>). When the VS is shaken by symmetrical (e.g. sinusoidal) ac fields, the critical current density is modified to j_c^) at regions where vortices have been forced to oscillate by a current density larger than j_c^>. Experimentally, an initial state with high critical current density (j_c^>) can be obtained by zero field cooling, field cooling (with no applied ac field) or by shaking the vortex lattice with an asymmetrical (e.g. sawtooth) field. We compare our calculations with experimental ac susceptibility results in YBa2Cu3O7 single crystals.Comment: 11 pages, 7 figures. To be published in PR

    Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning

    Full text link
    An exact analytical solution is given for the critical state problem in long thin superconductor strips in a perpendicular magnetic field, when the critical current density j_c(B) depends on the local induction B according to a simple three-parameter model. This model describes both isotropic superconductors with this j_c(B) dependence, but also superconductors with anisotropic pinning described by a dependence j_c(theta) where theta is the tilt angle of the flux lines away from the normal to the specimen plane

    Variational theory of flux-line liquids

    Full text link
    We formulate a variational (Hartree like) description of flux line liquids which improves on the theory we developed in an earlier paper [A.M. Ettouhami, Phys. Rev. B 65, 134504 (2002)]. We derive, in particular, how the massive term confining the fluctuations of flux lines varies with temperature and show that this term vanishes at high enough temperatures where the vortices behave as freely fluctuating elastic lines.Comment: 10 pages, 1 postscript figur

    Magnetic-field and current-density distributions in thin-film superconducting rings and disks

    Full text link
    We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting annular ring (inner radius a, outer radius b, and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d << a for the following cases: (a) magnetic flux trapped in the hole in the absence of an applied magnetic field, (b) zero magnetic flux in the hole when the ring is subjected to an applied magnetic field, and (c) focusing of magnetic flux into the hole when a magnetic field is applied but no net current flows around the ring. We use a similar method to calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic flux of radius a when flux entry is impeded by a geometrical barrier.Comment: 10 pages, 13 figure

    Universality of Frequency and Field Scaling of the Conductivity Measured by Ac-Susceptibility of a Ybco-Film

    Full text link
    Utilizing a novel and exact inversion scheme, we determine the complex linear conductivity σ(ω)\sigma (\omega ) from the linear magnetic ac-susceptibility which has been measured from 3\,mHz to 50\,MHz in fields between 0.4\,T and 4\,T applied parallel to the c-axis of a 250\,nm thin disk. The frequency derivative of the phase σ/σ\sigma ''/\sigma ' and the dynamical scaling of σ(ω)\sigma (\omega) above and below Tg(B)T_g(B) provide clear evidence for a continuous phase transition at TgT_g to a generic superconducting state. Based on the vortex-glass scaling model, the resulting critical exponents ν\nu and zz are close to those frequently obtained on films by other means and associated with an 'isotropic' vortex glass. The field effect on σ(ω)\sigma(\omega) can be related to the increase of the glass coherence length, ξgB\xi_g\sim B.Comment: 8 pages (5 figures upon request), revtex 3.0, APK.94.01.0

    A Scenario to the Anomalous Hall Effect in the Mixed State of Superconductors

    Full text link
    We argue that the motion of vacancies in a pinned vortex lattice may dominate the contribution to the Hall effect in an appropriate parameter regime for a superconductor. Based on this consideration a model is constructed to explain the anomalous Hall effect without any modification of the basic vortex dynamic equation. Quantitative predictions are obtained. Present model can be directly tested by an observation of the vacancy motion.Comment: latex, 6 pages (Presented at the Miami High Tc Conf., Jan 5-11, 1995. To appear at J. Supercond.

    Meissner state in finite superconducting cylinders with uniform applied magnetic field

    Full text link
    We study the magnetic response of superconductors in the presence of low values of a uniform applied magnetic field. We report measurements of DC magnetization and AC magnetic susceptibility performed on niobium cylinders of different length-to-radius ratios, which show a dramatic enhance of the initial magnetization for thin samples, due to the demagnetizing effects. The experimental results are analyzed by applying a model that calculates the magnetic response of the superconductor, taking into account the effects of the demagnetizing fields. We use the results of magnetization and current and field distributions of perfectly diamagnetic cylinders to discuss the physics of the demagnetizing effects in the Meissner state of type-II superconductors.Comment: Accepted to be published in Phys. Rev. B; 15 pages, 7 ps figure

    Scaling and exact solutions for the flux creep problem in a slab superconductor

    Full text link
    The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is considered. Logarithmic dependence of the activation energy on the current density is assumed, U=U0 ln(J/Jc), with a field dependent Jc. The density B of the magnetic flux penetrating into the superconductor, is shown to obey a scaling law, i.e., the profiles B(x) at different times can be scaled to a function of a single variable. We found exact solution for the scaling function in some specific cases, and an approximate solution for a general case. The scaling also holds for a slab carrying transport current I resulting in a power-law V(I) with exponent p~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling is broken and p crosses over to U0/kT.Comment: RevTex, 10 pages including 6 figures, submitted to Phys.Rev.
    corecore