41 research outputs found

    Quantum measurement problem and cluster separability

    Get PDF
    A modified Beltrametti-Cassinelli-Lahti model of measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses for microsystems must contain detectors and that their readings are signals from detectors. This implies that separation status of a microsystem changes during both preparation and registration. A new rule that specifies what happens at these changes and that guarantees the objectification is formulated and discussed. A part of our result has certain similarity with 'collapse of the wave function'.Comment: 31 pages, no figure. Published versio

    A method for measuring intracellular free magnesium concentration in platelets using flow cytometry

    No full text
    Magnesium is the fourth most abundant cation in the body and is involved in over 302 enzymatic reactions. Basic science research has implicated magnesium deficiency as a cause of insulin resistance which is related to hypertension, diabetes, hyperlipidemia and increased cardiovascular risk. Research in magnesium deficiency states has been hindered because magnesium is an intracellular ion and difficult to measure. Our goal was to develop a reproducible assay to measure intracellular magnesium in platelets. Healthy volunteers agreed to have blood drawn for magnesium measurement. Platelet rich plasma was harvested from a venipuncture specimen and run through the flow cytometer. A standard titer curve using known increasing concentrations of magnesium chloride was created for each specimen, and then with the other half the specimen was run to measure the true intracellular free magnesium concentration. 15 adults agreed to volunteer for this experiment. All standard titer curves for all specimens had a correlation of > 0.99. The mean concentration of intracellular free magnesium was 450.05 microM with a range of 203.68 microM to 673.50 microM. Intracellular free magnesium can reliably and reproducibly be measured in platelets using Mag Green fluorescent dye and flow cytometry. This should advance our ability to study magnesium deficient states
    corecore