84 research outputs found

    Propagation effects at low frequencies seen in the LOFAR long-term monitoring of the periodically active FRB 20180916B

    Get PDF
    LOFAR (LOw Frequency ARray) has previously detected bursts from the periodically active, repeating fast radio burst (FRB) source FRB 20180916B down to unprecedentedly low radio frequencies of 110 MHz. Here, we present 11 new bursts in 223 more hours of continued monitoring of FRB 20180916B in the 110–188 MHz band with LOFAR. We place new constraints on the source’s activity window w = 4.3+0.7-0.2 d and phase centre φ LOFARc  = 0.67+0.03-0.02 in its 16.33-d activity cycle, strengthening evidence for its frequency-dependent activity cycle. Propagation effects like Faraday rotation and scattering are especially pronounced at low frequencies and constrain properties of FRB 20180916B’s local environment. We track variations in scattering and time–frequency drift rates, and find no evidence for trends in time or activity phase. Faraday rotation measure (RM) variations seen between June 2021 and August 2022 show a fractional change >50 per cent with hints of flattening of the gradient of the previously reported secular trend seen at 600 MHz. The frequency-dependent window of activity at LOFAR appears stable despite the significant changes in RM, leading us to deduce that these two effects have different causes. Depolarization of and within individual bursts towards lower radio frequencies is quantified using LOFAR’s large fractional bandwidth, with some bursts showing no detectable polarization. However, the degree of depolarization seems uncorrelated to the scattering time-scales, allowing us to evaluate different depolarization models. We discuss these results in the context of models that invoke rotation, precession, or binary orbital motion to explain the periodic activity of FRB 20180916B

    ISO Spectroscopy of Young Stellar Objects

    Get PDF
    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO_2, CH_4 and H_2O. An overview of the wealth of observations on gas-phase H_2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H_2, CO and H_2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [0 I] 63 µm, [S I] 25 µm and (Si II] 35 µm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs

    The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Get PDF
    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This work was performed on the gSTAR national facility at Swinburne University of Technology. gSTAR is funded by Swinburne and the Australian Government’s Education Investment Fund. EP receives funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 617199. The work of MK and RPE is supported by the ERC Synergy Grant ‘BlackHoleCam: Imaging the Event Horizon of Black Holes’ (Grant 610058)

    The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up

    Get PDF
    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 ± 0.3 pc cm-3) detected to date. Three of the FRBs have high dispersion measures (DM>1500 pc cm-3), favouring a scenario where theDMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences >2 Jyms is α = -2.2+0.6 -1.2 and still consistent with a Euclidean distribution (α = -3/2). We also find that the all-sky rate is 1.7+1.5 -0.9 × 103FRBs/(4π sr)/day above ~2 Jy ms and there is currently no strong evidence for a latitude-dependent FRB sky rate
    • …
    corecore