24 research outputs found

    Insertional mutation of the hairless locus on mouse Chromosome 14

    Full text link
    Crosses between heterozygous transgenic mice from line 5053 produced offspring with progressive irreversible hair loss beginning at day 10. With increasing age, the skin of these animals became thicker and plicated in appearance. Histological analysis revealed the complete absence of normal hair follicles and numerous intradermic cystic structures, which enlarged with time and became filled with keratinaceous material. Test crosses demonstrated that the affected animals are homozygous for the transgene insertion. The clinicla and histological phenotype of the new mutant closely resembles that of the rhino allele at the hairless locus on Chromosome (Chr) 14. Complementation tests and linkage analysis indicate that the transgene has interrupted the hairless locus. It has been demonstrated previously that mutation at the hr locus is accompanied by a variety of immune deficiencies. Many of the older affected transgenic mice developed an impetigo-like skin eruption which responded to antibiotic ointment and which may reflect impaired immune function. The transgenic allele, hr TgN5053Mm , will be useful for identification of the transcription unit of the hairless locus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47000/1/335_2004_Article_BF00360900.pd

    Cytogenetics : An Introduction

    No full text
    xii,259 hall,;ill,;18c

    Locomotor and oculomotor impairment associated with cerebellar dysgenesis in Zic3-deficient (Bent tail) mutant mice.

    No full text
    Contains fulltext : 57535.pdf (publisher's version ) (Closed access)We examined the adult neural phenotypes of the Bent tail mutant mouse. The Bent tail mutant mouse was recently shown to lack a submicroscopic part of the X chromosome containing the Zic3 gene, which encodes a zinc-finger protein controlling vertebrate neural development. While nearly one-fourth of hemizygous Bent tail (Bn/Y, Zic3-deficient) mice developed neural tube defects in their midbrain and hindbrain region, the other Bn/Y mice showed apparently normal behaviour in a C57BL/6 genetic background. A battery of behavioural and eye movement tests revealed impaired spontaneous locomotor activity, reduction of muscle tone and impairments of vestibuloocular and optokinetic eye movements in these mice. Morphological examination of the mutant brain showed a significant reduction in the cell numbers in the cerebellar anterior lobe and paraflocculus-flocculus complex. Our results indicate that the cerebellar dysgenesis characterized by subregional hypoplasia affects the locomotor activity, muscle tone and eye movement control of the mice. These findings may have some clinical implications in relation to disorders characterized by cerebellar dysgenesis, such as Joubert syndrome
    corecore