65 research outputs found

    Bergmann-Thomson energy-momentum complex for solutions more general than the Kerr-Schild class

    Get PDF
    In a very well-known paper, Virbhadra's research group proved that the Weinberg, Papapetrou, Landau and Lifshitz, and Einstein energy-momentum complexes ``coincide'' for all metrics of Kerr-Schild class. A few years later, Virbhadra clarified that this ``coincidence'' in fact holds for metrics more general than the Kerr-Schild class. In the present paper, this study is extended for the Bergmann-Thomson complex and it is proved that this complex also ``coincides'' with those complexes for a more general than the Kerr-Schild class metric.Comment: RevTex, 12 page

    Energy and Momentum densities of cosmological models, with equation of state ρ=μ\rho=\mu, in general relativity and teleparallel gravity

    Full text link
    We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex's value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in International Journal of Theoretical Physic

    Hawking Radiation from Non-Extremal D1-D5 Black Hole via Anomalies

    Full text link
    We take the method of anomaly cancellation for the derivation of Hawking radiation initiated by Robinson and Wilczek, and apply it to the non-extremal five-dimensional D1-D5 black hole in string theory. The fluxes of the electric charge flow and the energy-momentum tensor from the black hole are obtained. They are shown to match exactly with those of the two-dimensional black body radiation at the Hawking temperature.Comment: 14 page

    The Energy-Momentum Tensor in the 1+1 dimensional non-rotating BTZ black hole

    Full text link
    We study the energy-momentum tensor for the real scalar field on the 1+1 dimensional BTZ black hole. We obtain closed expressions for it.Comment: 7 pages. Accepted for publication in General Relativity and Gravitation, 201

    Bogoliubov Coefficients of 2D Charged Black Holes

    Get PDF
    We exactly calculate the thermal distribution and temperature of Hawking radiation for a two-dimensional charged dilatonic black hole after it has settled down to an "equilibrium" state. The calculation is carried out using the Bogoliubov coefficients. The background of the process is furnished by a preexisting black hole and not by collapsing matter as considered by Giddings and Nelson for the case of a Schwarzschild black hole. Furthermore, the vanishing of the temperature and/or the Hawking radiation in the extremal case is obtained as a regular limit of the general case.Comment: 9 pages, 1 eps figur

    On the energy of charged black holes in generalized dilaton-axion gravity

    Full text link
    In this paper we calculate the energy distribution of some charged black holes in generalized dilaton-axion gravity. The solutions correspond to charged black holes arising in a Kalb-Ramond-dilaton background and some existing non-rotating black hole solutions are recovered in special cases. We focus our study to asymptotically flat and asymptotically non-flat types of solutions and resort for this purpose to the M{\o}ller prescription. Various aspects of energy are also analyzed.Comment: LaTe

    Energy and Momentum Distributions of Kantowski and Sachs Space-time

    Full text link
    We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou energy-momentum complexes to calculate the energy and momentum distributions of Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy distribution, but the definition of Landau-Lifshitz do not agree with them. We show that a signature switch should affect about everything including energy distribution in the case of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and Landau-Lifshitz prescriptions.Comment: 12 page

    Are Extremal 2D Black Holes Really Frozen ?

    Get PDF
    In the standard methodology for evaluating the Hawking radiation emanating from a black hole, the background geometry is fixed. Trying to be more realistic we consider a dynamical geometry for a two-dimensional charged black hole and we evaluate the Hawking radiation as tunneling process. This modification to the geometry gives rise to a nonthermal part in the radiation spectrum. We explore the consequences of this new term for the extremal case.Comment: 7 pages, LaTeX, no figure

    Hawking Radiation as Quantum Tunneling in Rindler Coordinate

    Full text link
    We substantiate the Hawking radiation as quantum tunneling of fields or particles crossing the horizon by using the Rindler coordinate. The thermal spectrum detected by an accelerated particle is interpreted as quantum tunneling in the Rindler spacetime. Representing the spacetime near the horizon locally as a Rindler spacetime, we find the emission rate by tunneling, which is expressed as a contour integral and gives the correct Boltzmann factor. We apply the method to non-extremal black holes such as a Schwarzschild black hole, a non-extremal Reissner-Nordstr\"{o}m black hole, a charged Kerr black hole, de Sitter space, and a Schwarzschild-anti de Sitter black hole.Comment: LaTex 19 pages, no figure; references added and replaced by the version accepted in JHE

    The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics

    Full text link
    According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes, we evaluate the energy distribution of the singularity-free solution of the Einstein field equations coupled to a suitable nonlinear electrodynamics suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy associated with the definitions of Einstein and Weinberg are the same, but M{\o}ller not. Using the power series expansion, we find out that the first two terms in the expression are the same as the energy distributions of the Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the factualness between numerous solutions of the Einstein field eqautions coupled to a nonlinear electrodynamics.Comment: 11 page
    corecore