19 research outputs found

    Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer's disease

    No full text
    A hallmark of Alzheimer's disease (AD) is the accumulation of oligomeric amyloid-β (Aβ) peptide, which may be primarily responsible for neuronal dysfunction. Insulin signaling provides a defense mechanism against oligomer-induced neuronal loss. We previously described the neuroprotective role of matrix metalloproteinase 9 (MMP-9) in decreasing the formation of Aβ oligomers. In the present study, we examined the role of MMP-9 on the insulin survival pathway in primary hippocampal cultures and hippocampal cell extracts from 3 month-old wild type, AD (5XFAD), MMP-9-overexpressing (TgMMP-9), and double transgenic mice (5XFAD/TgMMP-9). The data demonstrate that the insulin pathway was compromised in samples from 5XFAD mice, when compared to the wild type and TgMMP-9. This was due to enhanced phosphorylation of IRS1 at Serine 636 (pIRS1-Ser636), which renders IRS1 inactive and prevents insulin-mediated signaling. In 5XFAD/TgMMP-9 samples, the insulin survival pathway was rescued through enhanced activation by phosphorylation of IRS1 at Tyrosine 465 (pIRS1-Tyr465), downstream increased phosphorylation of Akt and GSK-3β, and decreased phosphorylation of JNK kinase. Oligomeric Aβ levels decreased and BDNF levels increased in 5XFAD/TgMMP-9 mice, compared to 5XFAD mice. Our findings indicate that overexpression of MMP-9 rescued insulin survival signaling in vitro and in early stages in the 5XFAD model of AD. © 2017 The Author(s)

    A Review on Platelet Activating Factor Inhibitors: Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties?

    No full text
    In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. © 2017 Vasiliki D. Papakonstantinou et al

    Abeta(1-40)-induced secretion of matrix metalloproteinase-9 results in sAPPα release by association with cell surface APP

    No full text
    To understand matrix metalloproteinase-9 (MMP-9) involvement in Alzheimer's disease, we examined mechanisms mediating increased expression of MMP-9 in the presence of Abeta(1-40) and the role of MMP-9 on amyloid precursor protein (APP) processing. Up-regulation of MMP-9 expressed by SK-N-SH cells in the presence of Aβ(1-40) was mediated by α3β1 and α2β1 integrin receptors. Overexpression of MMP-9 or treatment of HEK/APP695 cells with activated recombinant MMP-9 resulted in enhanced secretion of soluble APP (sAPPα), a product of α-secretase cleavage, and reduction of Aβ release. MMP-9 effect was enhanced by phorbol 12-mysistrate-13-acetate (PMA), an α-secretase activator and inhibited by EDTA or SB-3CT, an MMP-9 inhibitor. Additionally, immunoprecipitation and confocal microscopy demonstrated that MMP-9 and APP695 were associated on the cell surface. These results indicate that Aβ peptide increases MMP-9 secretion through integrins; MMP-9 then directly processes cell surface APP695 with an α-secretase like activity, substantially reducing the levels of secreted Aβ peptide. © 2007 Elsevier Inc. All rights reserved

    High glucose impairs insulin signaling in the glomerulus: An in vitro and ex vivo approach

    No full text
    Objective: Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings: HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions: These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy. © 2016 Katsoulieris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over-expressing MMP9

    No full text
    Evidence accumulating during the past few years points to a significant role of matrix metalloproteinase 9 (MMP9) enzymatic activity in synaptic plasticity and cognitive processes. We have previously demonstrated that MMP9 is involved in receptor-mediated α-secretase-like cleavage of APP in vitro, resulting in increased secretion of sAPPα, the soluble N-terminal product of the non-amyloidogenic pathway known to be involved in neuronal plasticity and memory formation. To study the in vivo role of MMP9, we have generated transgenic mice over-expressing MMP9 in the brain. Herein, we demonstrate that MMP9 transgenic animals display enhanced performance in the non-spatial novel object recognition and the spatial water-maze task and that their enhanced performance was accompanied by increased dendritic spine density in the hippocampus and cortex following behavioural testing. Consistent with the above observations, the electrophysiological analysis revealed prolonged maintenance of long-term synaptic potentiation in hippocampal slices from MMP9 transgenic mice. Moreover, elevated sAPPα levels in the hippocampus and cortex of MPP9 transgenic animals were also observed. Overall, our results extend previous findings on the physiological role of MMP9 in neuronal plasticity and furthermore reveal that, APP may be one of the physiological proteolytic targets of MMP9 in vivo. © 2011 The Authors © 2011 International Society for Neurochemistry

    Oleuropein, an anti-oxidant polyphenol constituent of olive promotes α-Secretase cleavage of the amyloid precursor protein (AβPP)

    No full text
    Over the past decade, intense focus has been dedicated on investigating processes involved in the proteolysis of amyloid precursor protein (AβPP) and β-amyloid (Aβ) peptide metabolism, as possible targets for Alzheimer's disease (AD) therapy. To this goal, considerable research has been targeted on potential therapeutic use of compounds promoting non-amyloidogenic processing of AβPP. One of these compounds, oleuropein, a polyphenol constituent of extra virgin olive oil exhibiting a wide range of pharmacological properties, was shown to interact non-covalently with Aβ, an interaction that might be related to a potential protective role of oleuropein against Aβ aggregation. In the present study, it was demonstrated that oleuropein treatment of HEK293 cells stably transfected with the isoform 695 of human AβPP (APP695) leads to markedly elevated levels of sAPPα and to significant reduction of Aβ oligomers. These effects were associated with increased activity of matrix metalloproteinase 9 (MMP-9), whereas no significant alterations in the expression of secretases TACE, ADAM-10 or BACE-1 were observed. Similar results were obtained using the human neuroblastoma cell line SK-N-SH. The experimental data reveal an anti-amyloidogenic effect of oleuropein and suggest a possible protective role for oleuropein against AD, extending the spectrum of beneficial properties of this naturally occurring polyphenol. © 2012 Springer Science+Business Media New York

    Vitamin D receptor activators upregulate and rescue podocalyxin expression in high glucose-treated human podocytes

    No full text
    Background: Vitamin D is beneficial in human and experimental chronic kidney disease, the leading cause of which is diabetic nephropathy. Vitamin D through its receptor, VDR, provides renal protection in diabetic nephropathy, but limited data exist about its effect on podocytes. Renal podocytes form the main filtration barrier possessing a unique phenotype maintained by proteins including podocalyxin and nephrin, the expression of which is suppressed in pathological conditions. Methods: We used immortalized human podocytes (human glomerular epithelial cells, HGEC) to assess podocalyxin and nephrin expression after treatment with 1,25-dihydroxyvitamin D3 (calcitriol) and its analogue paricalcitol. The involvement of VDR was investigated by silencing with hVDR-siRNA and ChIP analysis. Results: HGEC exhibit high glucose-mediated downregulation of podocalyxin and nephrin, loss of which has been linked with loss of the permselective renal barrier and proteinuria. Calcitriol and paricalcitol reversed high glucose-induced decrease of nephrin and significantly enhanced podocalyxin expression in podocytes cultured in high glucose. HGEC express VDR and retinoid X receptor (RXR). In the presence of calcitriol and paricalcitol, VDR expression was upregulated and VDR colocalized with RXR in the nucleus. VDR knockdown abolished the protective action of calcitriol and paricalcitol on podocalyxin expression indicating that podocalyxin activation of expression is partly mediated by VDR. Furthermore, VDR specifically regulates podocalyxin expression by bounding to a site upstream of the podocalyxin promoter. Conclusion: Vitamin D analogues maintain and, furthermore, re-activate the expression of specialized components of podocytes including podocalyxin, hence they provide protection against loss of the permselective renal barrier, with molecular mechanisms elucidated herein. © 2013 S. Karger AG, Basel

    Synthesis of hydroxyapatite, β-Tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: Loading, release and in vitro studies

    No full text
    The successful synthesis of hydroxyapatite (HA), β-Tricalcium phosphate (β-TCP) and two biphasic mixtures (BCPs) of the two was performed by means of wet precipitation. The resulting crystals were characterized and the BCP composition was analyzed and identified as 13% HA-87% TCP and 41% HA-59% TCP. All samples were treated with curcumin solutions, and the degree of curcumin loading and release was found to be proportional to the TCP content of the ceramic. No further cytotoxicity was observed upon MG-63 treatment with the curcumin-loaded ceramics. Finally, the alkaline phosphatase activity of the cells was found to increase with increasing content of TCP, which provides an encouraging proof of concept for the use of curcumin-loaded synthetic biomaterials in bone remodeling. © 2018 by the authors
    corecore