57 research outputs found

    Chemical and molecular genetic strategies to block ethylene perception for increased flower life

    Get PDF
    Ethylene has been known to cause many undesirable effects in a range of ornamental species. Blocking ethylene responses has been proved as an efficient strategy to enhance the longevity of the flowers. The most effective ways to conduct such interference are using chemical compounds or genetic manipulation. In the last 15 years a large number of volatile chemical compounds have been evaluated for their effects on ethylene production and perception. This has resulted in the discovery that cyclopropenes effectively block ethylene responses at the receptor level. The most promising among them are 1-methylcyclopropene (1-MCP) and a number of other substituted cyclopropenes. A lot of testing remains to be done to uncover the full potential of these compounds, but they do offer promising new ways to improve the postharvest quality and longevity of ornamentals. Another very effective way for controlling ethylene synthesis and perception is genetic modification. The most promising strategy seems to be the use of the mutant ethylene receptor gene, etr1-1, from Arabidopsis thaliana, especially when it is expressed under the control of a flower specific promoter

    Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripeningrelated genes isolated by differential display.

    Get PDF
    Differential display was used to isolate early ethyleneregulated genes from late immature green tomato fruit in order to obtain a broader understanding of the molecular basis by which ethylene coordinates the ripening process. Nineteen novel ethylene-responsive (ER) cDNA clones were isolated that fell into three classes: (i) ethylene up-regulated (ii) ethylene downregulated, and (iii) transiently induced. Expression analysis revealed that ethylene-dependent changes in mRNA accumulation occurred rapidly (15 min) for most of the ER clones. The predicted proteins encoded by the ER genes are putatively involved in processes as diverse as primary metabolism, hormone signalling and stress responses. Although a number of the isolated ER clones correspond to genes already documented in other species, their responsiveness to ethylene is described here for the ®rst time. Among the ER clones sharing high homology with regulatory genes, ER43, a putative GTP-binding protein, and ER50, a CTR1-like clone, are potentially involved in signal transduction. ER24 is homologous to the multiprotein bridging factor MBF1 involved in transcriptional activation, and ®nally, two clones are homologous to genes involved in post-transcriptional regulation: ER49, a putative translational elongation factor, and ER68, a mRNA helicase-like gene. Six ER clones correspond to as yet unidenti®ed genes. The expression studies indicated that all the ER genes are ripening-regulated, and, depending on the clone, show changes in transcript accumulation either at the breaker, turning, or red stage. Analysis of transcript accumulation in different organs indicated a strong bias towards expression in the fruit for many of the clones. The potential roles for some of the ER clone
    • …
    corecore