11 research outputs found

    A Self-Consistent First-Principles Technique Having Linear Scaling

    Full text link
    An algorithm for first-principles electronic structure calculations having a computational cost which scales linearly with the system size is presented. Our method exploits the real-space localization of the density matrix, and in this respect it is related to the technique of Li, Nunes and Vanderbilt. The density matrix is expressed in terms of localized support functions, and a matrix of variational parameters, L, having a finite spatial range. The total energy is minimized with respect to both the support functions and the elements of the L matrix. The method is variational, and becomes exact as the ranges of the support functions and the L matrix are increased. We have tested the method on crystalline silicon systems containing up to 216 atoms, and we discuss some of these results.Comment: 12 pages, REVTeX, 2 figure

    Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates

    Full text link
    We present a detailed calculation of the magnetic couplings between nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing geometry, ubiquitous in many cuprates. In this geometry, the interaction between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu angle is close to 90 degrees. The derivation is based on a perturbation expansion of a general Hubbard Hamiltonian, and produces numerical estimates for the various magnetic energies. In particular we find the dependence of the anisotropy energies on the angular deviation away from the 90 degrees geometry of the Cu-O-Cu bonds. Our results are required for the correct analysis of the magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure

    Towards a Linear-Scaling DFT Technique: The Density Matrix Approach

    Full text link
    A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in detail. The method is based on a formulation of density functional theory in which the ground state energy is determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of the latter lie in the range [0,1]. Linear-scaling behavior is achieved by requiring that the density matrix should vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is imposed by the method of Li, Nunes and Vanderbilt. The scheme is implemented by calculating all terms in the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method. Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix is increased. A discussion of the relation between the present method and other linear-scaling methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure

    Local anharmonic vibrations strong correlations and superconductivity: A quantum simulation study

    No full text
    We investigate the importance of local anharmonic vibrations of the bridging oxygen in the copper oxide high-T c materials in the context of superconductivity. For the numerical simulation we employ the projector quantum Monte Carlo method to study the ground state properties of the coupled electron-phonon system. The quantum Monte Carlo simulation allows an accurate treatment of electronic interactions which investigates the influence of strong correlations on superconductivity mediated by additional quantum degrees of freedom. As a generic model for such a system, we study the two-dimensional single band Hubbard model coupled to local pseudo spins (bridging oxygen), which mediate an effective attractive electron-electron interaction leading to superconductivity. The results are compared to those of an effective negativeU model
    corecore