3 research outputs found

    Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Get PDF
    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100°C for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation

    Predicting the effect of radiation damage on dark current in a space-qualified high performance CMOS image sensor

    Get PDF
    The CIS115 is a Teledyne-e2v CMOS image sensor with 1504 × 2000 pixels of 7 μm pitch. It has a high optical quantum efficiency owing to a multi-layer anti-reflective coating and its backside illuminated construction, and low dark current due to its pinned photodiode 4T pixel architecture. The sensor operates in rolling shutter mode with a frame rate of up to 7.5 fps (if using the whole array), and has a low readout noise of ~5 electrons rms. The CIS115 has been selected for use within the JANUS instrument, which is a high resolution camera due to launch on board ESA's JUpiter ICy moons Explorer (JUICE) spacecraft in 2022. After an interplanetary transit time of over 7 years, JUICE will spend 3.5 years touring the Jovian system, studying three of the Galilean moons in particular: Ganymede, Callisto and Europa. During this latter part of the mission, the spacecraft and hence the CIS115 sensor will be subjected to the significant levels of trapped radiation surrounding Jupiter. Gamma and proton irradiation campaigns have therefore been undertaken in order to evaluate both ionising and non-ionising dose effects on the CIS115's dark current performance. Characterisations were carried out at expected mission operating temperatures (−35 ± 10oC) both prior to and post-irradiation. Models of the resulting degradation in dark current behaviour will be combined with expected doses during the JUICE mission in order to predict the performance of the CIS115 at the mission end-of-lif
    corecore